岭回归与Lasso回归

线性回归的一般形式


过拟合问题及其解决方法

    • 问题:以下面一张图片展示过拟合问题

    • 解决方法:(1):丢弃一些对我们最终预测结果影响不大的特征,具体哪些特征需要丢弃可以通过PCA算法来实现;(2):使用正则化技术,保留所有特征,但是减少特征前面的参数θ的大小,具体就是修改线性回归中的损失函数形式即可,岭回归以及Lasso回归就是这么做的。

岭回归与Lasso回归


岭回归与Lasso回归的出现是为了解决线性回归出现的过拟合以及在通过正规方程方法求解θ的过程中出现的x转置乘以x不可逆这两类问题的,这两种回归均通过在损失函数中引入正则化项来达到目的,具体三者的损失函数对比见下图:

其中λ称为正则化参数,如果λ选取过大,会把所有参数θ均最小化,造成欠拟合,如果λ选取过小,会导致对过拟合问题解决不当,因此λ的选取是一个技术活。

岭回归与Lasso回归最大的区别在于岭回归引入的是L2范数惩罚项,Lasso回归引入的是L1范数惩罚项,Lasso回归能够使得损失函数中的许多θ均变成0,这点要优于岭回归,因为岭回归是要所有的θ均存在的,这样计算量Lasso回归将远远小于岭回归。

可以看到,Lasso回归最终会趋于一条直线,原因就在于好多θ值已经均为0,而岭回归却有一定平滑度,因为所有的θ值均存在。

摘自:https://blog.csdn.net/hzw19920329/article/details/77200475

原文地址:https://www.cnblogs.com/bonelee/p/8996443.html

时间: 2024-10-14 12:13:16

岭回归与Lasso回归的相关文章

岭回归和lasso回归(转)

回归和分类是机器学习算法所要解决的两个主要问题.分类大家都知道,模型的输出值是离散值,对应着相应的类别,通常的简单分类问题模型输出值是二值的,也就是二分类问题.但是回归就稍微复杂一些,回归模型的输出值是连续的,也就是说,回归模型更像是一个函数,该函数通过不同的输入,得到不同的输出. 那么,什么是线性回归,什么是非线性回归呢? 线性回归与非线性回归 前面说了,我们的回归模型是一个函数是吧,那么线性回归就是模型函数是由若干个基本函数线性加权得到的函数.也就是每一个基本函数前面都有一个权值来调和自己对

线性回归、岭回归和LASSO回归

尽管有些内容还是不懂,先截取的摘录. 1.变量选择问题:从普通线性回归到lasso 使用最小二乘法拟合的普通线性回归是数据建模的基本方法.其建模要点在于误差项一般要求独立同分布(常假定为正态)零均值.t检验用来检验拟合的模型系数的显著性,F检验用来检验模型的显著性(方差分析).如果正态性不成立,t检验和F检验就没有意义. 对较复杂的数据建模(比如文本分类,图像去噪或者基因组研究)的时候,普通线性回归会有一些问题:(1)预测精度的问题 如果响应变量和预测变量之间有比较明显的线性关系,最小二乘回归会

机器学习之线性回归、岭回归、Lasso回归

1.回归算法分类算法的目标值是标称型数据,而回归的目标变量是连续型数据,主要包括线性回归,岭回归,lasso回归,前向逐步回归. 2.线性回归线性回归主要用于处理线性数据,结果易于理解,计算复杂度不高,但是处理不了非线性数据.线性回归用最适直线(回归线)去建立因变量Y和一个或多个自变量X之间的关系.可以用公式来表示:Y = wX + b.其中w为权重,也称为回归系数,b为偏置顶. 3.理解线性回归线性回归从高中数学就接触过了,不过我们主要学习二维形式的线性回归,即y = kx + b.其中斜率k

用R建立岭回归和lasso回归

1 分别使用岭回归和Lasso解决薛毅书第279页例6.10的回归问题 例6.10的问题如下: 输入例题中的数据,生成数据集,并做简单线性回归,查看效果 cement <- data.frame(X1 = c(7, 1, 11, 11, 7, 11, 3, 1, 2, 21, 1, 11, 10), X2 = c(26,     29, 56, 31, 52, 55, 71, 31, 54, 47, 40, 66, 68), X3 = c(6, 15, 8, 8, 6,     9, 17, 2

最小二乘回归,岭回归,Lasso回归,弹性网络

普通最小二乘法 理论: 损失函数: 权重计算: 1.对于普通最小二乘的系数估计问题,其依赖于模型各项的相互独立性. 2.当各项是相关的,且设计矩阵 X的各列近似线性相关,那么,设计矩阵会趋向于奇异矩阵,这会导致最小二乘估计对于随机误差非常敏感,产生很大的方差. 例如,在没有实验设计的情况下收集到的数据,这种多重共线性(multicollinearity)的情况可能真的会出现. 使用: from sklearn import datasets, linear_model regr = linear

吴裕雄 数据挖掘与分析案例实战(7)——岭回归与LASSO回归模型

# 导入第三方模块import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom sklearn import model_selectionfrom sklearn.linear_model import Ridge,RidgeCV # 读取糖尿病数据集diabetes = pd.read_excel(r'F:\\python_Data_analysis_and_mining\\08\\diabetes.xlsx

线性回归——lasso回归和岭回归(ridge regression)

目录 线性回归--最小二乘 Lasso回归和岭回归 为什么 lasso 更容易使部分权重变为 0 而 ridge 不行? References 线性回归很简单,用线性函数拟合数据,用 mean square error (mse) 计算损失(cost),然后用梯度下降法找到一组使 mse 最小的权重. lasso 回归和岭回归(ridge regression)其实就是在标准线性回归的基础上分别加入 L1 和 L2 正则化(regularization). 本文的重点是解释为什么 L1 正则化会

关于机器学习中LASSO回归的相关补充

在之前的相关文章中笔者给出了一般回归的补充,即岭回归和LASSO回归,它们都是为了解决在回归过程中的过拟合问题,其具体解决方案就分别是在目标函数后增加2范数和1范数以限定参数的表现,对于岭回归而言,由于2使用范数的原因,这个目标函数仍是可导的,但对于LASSO回归而言,就没有那么幸运了,因为1范数是不可导的,故没法直接求解这个目标函数. 而这个1范数求解的问题,在前面的文章中提到应使用FIST(Fast Iterative Shrinkage Thresholding,即快速收缩阈值,又可简写为

多重共线性的解决方法之——岭回归与LASSO

? ? ? 多元线性回归模型 的最小二乘估计结果为 如果存在较强的共线性,即 中各列向量之间存在较强的相关性,会导致的从而引起对角线上的 值很大 并且不一样的样本也会导致参数估计值变化非常大.即参数估计量的方差也增大,对参数的估计会不准确. 因此,是否可以删除掉一些相关性较强的变量呢?如果p个变量之间具有较强的相关性,那么又应当删除哪几个是比较好的呢? 本文介绍两种方法能够判断如何对具有多重共线性的模型进行变量剔除.即岭回归和LASSO(注:LASSO是在岭回归的基础上发展的) ? ? 思想: