机器学习之梯度下降法---梯度下降法分析

 梯度下降法的基本思想是函数沿着其梯度方向增加最快,反之,沿着其梯度反方向减小最快。在前面的线性回归逻辑回归中,都采用了梯度下降法来求解。梯度下降的迭代公式为:

θj=θj−α∂J(θ)∂θj

  在回归算法的实验中,梯度下降的步长α为0.01,当时也指出了该步长是通过多次时间找到的,且换一组数据后,算法可能不收敛。为什么会出现这样的问题呢?从梯度下降法的出发点可以看到,算法指出了行进的方向,但没有明确要行进多远,那么问题就来了,步子太小,走个一千一万年都到不了终点,而步子太大,扯到蛋不说,还可能越跑越远。

  如上图,蓝色为一个碗形函数,其最小值在x=2那点,假如从x=0开始迭代,即是图中点1,此时知道应该向右走,但步子太大,直接到点2 了,同样点2处知道该往左走,结果又跑太远到点3了,…,这样越走越偏离我们的终点了。此情况的验证可以直接把前面回归算法的步长改大,比如把线性回归迭代步长改为10,要不了几次迭代结果就是Nan了。

  这样有一点需要说明下,同样的步长α,为何从1到2和2到3的长度不一致?因为1-6点的梯度是逐步增大的,故虽然步长相同,但移动的距离却越来越远,从而进入了一个恶性循环了。

解决方法



  对于上面提出的问题,解决方法有多种,下面就大致来说说,若有新的方法此处未提及,欢迎补充。

  1.手动测试法

  顾名思义,此方法需要手动进行多次实验,不停调整参数,观测实验效果,最终来确定出一个最优的步长。那么如何判断实验效果的好坏呢?一种常用的方法是观察代价函数(对线性回归而言)的变化趋势,如果迭代结束后,代价函数还在不停减少,则说明步长过小;若代价函数呈现出振荡现象,则说明步长过大。如此多次调整可得到较合理的步长值。

显然,该方法给出的步长对于这组训练样本而言是相对较优的,但换一组样本,则需要重新实验来调整参数了;另外,该方法可能会比较累人~~

  2.固定步进

  这是一个非常保险的方法,但需要舍弃较多的时间资源。既然梯度下降法只给出方向,那么我们就沿着这个方向走固定路程,即将梯度下降迭代公式修改为:

θj=θj−αsign(∂J(θ)∂θj)

  其中的sign是符号函数。

  那么α取多大呢?就取可容许的最小误差,这样的迭代方式可以保证必然不会跨过最终点,但需要耗费更多次迭代。

  3.步长衰减

  步长衰减主要考虑到越接近终点,每一步越需要谨慎,故把步长减小,宁肯多走几步也绝不踏错一步。在吴恩达公开课中,他也提到了可在迭代中逐步减少步长。那如何减少步长?通常可以有这么几种做法:

  A.固定衰减。比如每次迭代后,步长衰减为前一次的某个比例(如95%)。

  B.选择性衰减。根据迭代状态来确定本次是否衰减,可以根据梯度或代价函数的情况来确定。比如,若此次迭代后代价函数增加了,则说明上次迭代步长过大,需要减小步长,否则保持不变,这么做的一个缺点是需要不停计算代价函数,训练样本过多可能会大大增加耗时;也可以根据梯度变化情况来判断,我们知道我们的终点是梯度为0的地方,若本次迭代后的梯度与前一次的梯度方向相反,则说明跨过了终点,需要减小步长。

  显然,采用步长衰减的方式,同样也依赖于初始步长,否则可能不收敛。当然其相对于固定步长,则会更具稳定性。

  4.自适应步长

  此方法思想来源与步长衰减。在每次迭代,按照下面步骤来计算步长:

  A.设置一个较大的初始步长值

  B.计算若以此步长移动后的梯度

  C.判断移动前后梯度方向是否会改变,若有改变,将步长减半,再进行A步;否则,以此步长为本次迭代的步长。

  还是以上面那个图像来说明下。首先,初始点1在x=0处,按照初始步长则应该移动到点2x=5处,可点1和2处梯度方向改变了,那边步长减半则应该到点Ax=2.5处,点1与A的梯度还是不同,那再将步长减半,则移动到点Bx=1.25处,由于点1与B的梯度方向相同,则此次迭代将从1移动到B。

  显然,该方法不会收到初始步长的影响,每次自动计算使得不会跨过终点的最大步长值。另一方面,从计算量上讲,有可能会比原来的方式更大,毕竟有得有失,你不用自己去一次次修改参数->运行程序->观察结果->…->修改参数。具体代码只需对原回归算法的代码略做修改即可。

  将原回归算法迭代中的2行代码

1         Grad = CalcGrad(TX, TY, Theta, fun);
2         Theta = Theta + Alpha .* Grad;

  修改为

 1         Alpha = 16 * ones(n, 1);
 2         Theta0 = Theta;
 3         Grad0 = CalcGrad(TX, TY, Theta0, fun);
 4         while(min(Alpha) > eps)
 5             Theta1 = Theta0 + Alpha .* Grad0;
 6             Grad1 = CalcGrad(TX, TY, Theta1, fun);
 7             s = sign(Grad1 .* Grad0);
 8             if (min(s)>=0)
 9                 break;
10             end
11
12             s(s==-1) = 0.5;
13             s(s==0) = 1;
14             Alpha = Alpha .* s;
15         end
16         Grad = Grad0;
17         Theta=Theta1;

  即可实现。

补充说明



  上面的说明是针对每一维的,对于步长需要每一维计算。若需要所有维度使用同一个步长,请先将训练样本归一化,否则很可能收敛不到你想要的结果。

http://www.cnblogs.com/jcchen1987/p/4441743.html#undefined

时间: 2024-10-29 19:07:39

机器学习之梯度下降法---梯度下降法分析的相关文章

机器学习(一)梯度下降算法的实现及过程分析

机器学习(一)梯度下降算法 因为算法最好能应用到实际问题中才会让读者感到它的真实的用处,因此首先我来描述一个实际问题(梯度下降算法用以帮助解决该问题):给定一个指定的数据集,比如由若干某一地区的房屋面积和房屋价格这样的数据对(area, price)组成的集合(吴恩达老师的课程是启蒙课程所以举该例子),我的目标是通过一个学习算法得到一个预测房价和房屋面积之间的函数,然后给定一个新的房屋面积,用这个函数来预测房价.如下图所示: 我的解决思路大致如下: 1.我找了一个很小的数据集,有两个特征X1,X

通过实例详解随机梯度与梯度下降

一.梯度下降.随机梯度下降.批量梯度下降 梯度下降:梯度下降中,对于θ 的更新,所有的样本都有贡献,也就是参与调整θ .其计算得到的是一个标准梯度.因而理论上来说一次更新的幅度是比较大的.如果样本不多的情况下,当然是这样收敛的速度会更快. 随机梯度下降:随机梯度下降法,随机用样本中的一个例子来近似总体样本,来调整θ .所以随机梯度下降是会带来一定的问题,因为计算得到的并不是准确的全局的梯度,容易陷入到局部最优解中 批量梯度下降:批量的梯度下降就是一种折中的方法,他用了一些小样本来近似全部的,其本

(5)【整合】基于机器学习的酒店评论文本倾向性分析

酒店评论情感分析系统(五)—— [整合]基于机器学习的酒店评论文本倾向性分析 本文主要是对之前的第三.四节所介绍的各分块进行整合. 流程: 对GUI界面输入的评论文本,先进行中文分词和去停用词,然后再按“环境,价格,卫生,服务”四个方面分类:同时通过调用LingPipe中的DynamicLMClassifier,对已标注的“中文情感挖掘酒店评论语料”库的学习,构造一个基本极性分析的分类器.最后用此分类器分别对整个评论文本给出总体评价和对四个方面分别给出相应的情感评价. 环境: 1. 操作系统:w

机器学习之最小二乘法和梯度下降法的区别

摘自知乎: 其实, 在计算量方面, 两者有很大的不同, 因而在面对给定的问题时, 可以有选择性的根据问题的性质选择两种方法中的一个.具体来说, 最小二乘法的矩阵公式是 , 这里的 A 是一个矩阵, b 是一个向量. 如果有离散数据点, , 而想要拟合的方程又大致形如 , 那么, A 就是一个  的矩阵, 第 i 行的数据点分别是 , 而 b 则是一个向量, 其值为 . 而又已知, 计算一个矩阵的逆是相当耗费时间的, 而且求逆也会存在数值不稳定的情况 (比如对希尔伯特矩阵求逆就几乎是不可能的).

机器学习(二)——梯度下降法

代价函数(cost function):弄清楚如何用最接近的直线和数据相拟合 线性拟合实际上是一个最小化的问题,使代价函数 (平方误差函数)最小(最小二乘法),采用梯度下降算法可将代价函数J最小化 梯度下降模拟图 在假设函数的参数范围内随机选择一组特定参数,我们以最快下降的方向降低成本函数.每个步骤的大小由参数α确定,称为学习速率(步长). 梯度下降算法是:重复直至收敛.而步骤的方向由偏导数确定,在每次迭代中,要同时更新参数. 如下: 有两个参数情况下,左边是对的,保持同步更新 注解: 如果学习

机器学习_logistic回归和梯度下降

原文:http://blog.csdn.net/dongtingzhizi/article/details/15962797  Logistic回归总结 PDF下载地址:http://download.csdn.net/detail/lewsn2008/6547463 1.引言 看了Stanford的Andrew Ng老师的机器学习公开课中关于Logistic Regression的讲解,然后又看了<机器学习实战>中的LogisticRegression部分,写下此篇学习笔记总结一下. 首先说

机器学习-监督学习应用:梯度下降

回归与梯度下降: 回归在数学上来说是给定一个点集,能够用一条曲线去拟合之,如果这个曲线是一条直线,那就被称为线性回归,如果曲线是一条二次曲线,就被称为二次回归,回归还有很多的变种,如locally weighted回归,logistic回归,等等,这个将在后面去讲. 用一个很简单的例子来说明回归,这个例子来自很多的地方,也在很多的open source的软件中看到,比如说weka.大概就是,做一个房屋价值的评估系统,一个房屋的价值来自很多地方,比如说面积.房间的数量(几室几厅).地 段.朝向等等

机器学习中最小二乘与梯度下降发的区别

http://www.zhihu.com/question/20822481 知乎用户,非文, 非理 Spirit_Dongdong.Wildog.mt Practices 等人赞同 同意 @张子权 的说法, 稍微再补充一下. 看问题估计, 题主可能是在学 machine learning 的东西, 所以才会有此问题. 但正如其他人指出的, 其实两种方法并不太具有可比性. 不过我当时在学的时候也有类似的问题. 当时我的问题是, 最小二乘法的矩阵解法和梯度下降法的区别在哪里? 我估摸着题主可能是想

机器学习(三)梯度下降与拟牛顿

这节课的推导真心hold不住了.按照自己的理解记下仅看明白的东西吧.或许还有第二遍.第三遍整理呢. 主要讲了两个问题: 学习率α如何确定? 使用固定的学习率还是变化的学习率? 学习率设置为多大比较好? 下降的方向如何处理,除了梯度方向,有没有其他方向? 可行方向和梯度方向有何关系? 先上结论: 使用固定的学习率还是变化的学习率? 使用变化的学习率好.学习率的确定可以这样:在参数迭代的开始阶段,由于与最优值差距较大,可以使用较大的学习率:在迭代后期,使用较小的学习率增加稳定性和精度. 学习率设置为