Linux时间子系统之一:clock source(时钟源)【转】

转自:http://blog.csdn.net/droidphone/article/details/7975694

clock source用于为linux内核提供一个时间基线,如果你用linux的date命令获取当前时间,内核会读取当前的clock source,转换并返回合适的时间单位给用户空间。在硬件层,它通常实现为一个由固定时钟频率驱动的计数器,计数器只能单调地增加,直到溢出为止。时钟源是内核计时的基础,系统启动时,内核通过硬件RTC获得当前时间,在这以后,在大多数情况下,内核通过选定的时钟源更新实时时间信息(墙上时间),而不再读取RTC的时间。本节的内核代码树基于V3.4.10。

/*****************************************************************************************************/
声明:本博内容均由http://blog.csdn.net/droidphone原创,转载请注明出处,谢谢!
/*****************************************************************************************************/

1.  struct clocksource结构

内核用一个clocksource结构对真实的时钟源进行软件抽象,现在我们从clock source的数据结构开始,它的定义如下:

[cpp] view plain copy

  1. struct clocksource {
  2. /*
  3. * Hotpath data, fits in a single cache line when the
  4. * clocksource itself is cacheline aligned.
  5. */
  6. cycle_t (*read)(struct clocksource *cs);
  7. cycle_t cycle_last;
  8. cycle_t mask;
  9. u32 mult;
  10. u32 shift;
  11. u64 max_idle_ns;
  12. u32 maxadj;
  13. #ifdef CONFIG_ARCH_CLOCKSOURCE_DATA
  14. struct arch_clocksource_data archdata;
  15. #endif
  16. const char *name;
  17. struct list_head list;
  18. int rating;
  19. int (*enable)(struct clocksource *cs);
  20. void (*disable)(struct clocksource *cs);
  21. unsigned long flags;
  22. void (*suspend)(struct clocksource *cs);
  23. void (*resume)(struct clocksource *cs);
  24. /* private: */
  25. #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
  26. /* Watchdog related data, used by the framework */
  27. struct list_head wd_list;
  28. cycle_t cs_last;
  29. cycle_t wd_last;
  30. #endif
  31. } ____cacheline_aligned;

我们只关注clocksource中的几个重要的字段。

1.1  rating:时钟源的精度

同一个设备下,可以有多个时钟源,每个时钟源的精度由驱动它的时钟频率决定,比如一个由10MHz时钟驱动的时钟源,他的精度就是100nS。clocksource结构中有一个rating字段,代表着该时钟源的精度范围,它的取值范围如下:

  • 1--99: 不适合于用作实际的时钟源,只用于启动过程或用于测试;
  • 100--199:基本可用,可用作真实的时钟源,但不推荐;
  • 200--299:精度较好,可用作真实的时钟源;
  • 300--399:很好,精确的时钟源;
  • 400--499:理想的时钟源,如有可能就必须选择它作为时钟源;

1.2  read回调函数

时钟源本身不会产生中断,要获得时钟源的当前计数,只能通过主动调用它的read回调函数来获得当前的计数值,注意这里只能获得计数值,也就是所谓的cycle,要获得相应的时间,必须要借助clocksource的mult和shift字段进行转换计算。

1.3  mult和shift字段

因为从clocksource中读到的值是一个cycle计数值,要转换为时间,我们必须要知道驱动clocksource的时钟频率F,一个简单的计算就可以完成:

t = cycle/F;

可是clocksource并没有保存时钟的频率F,因为使用上面的公式进行计算,需要使用浮点运算,这在内核中是不允许的,因此,内核使用了另外一个变通的办法,根据时钟的频率和期望的精度,事先计算出两个辅助常数mult和shift,然后使用以下公式进行cycle和t的转换:

t = (cycle * mult) >> shift;

只要我们保证:

F = (1 << shift) / mult;

内核内部使用64位进行该转换计算:

[cpp] view plain copy

  1. static inline s64 clocksource_cyc2ns(cycle_t cycles, u32 mult, u32 shift)
  2. {
  3. return ((u64) cycles * mult) >> shift;
  4. }

从转换精度考虑,mult的值是越大越好,但是为了计算过程不发生溢出,mult的值又不能取得过大。为此内核假设cycle计数值被转换后的最大时间值:10分钟(600秒),主要的考虑是CPU进入IDLE状态后,时间信息不会被更新,只要在10分钟内退出IDLE,clocksource的cycle计数值就可以被正确地转换为相应的时间,然后系统的时间信息可以被正确地更新。当然最后的结果不一定是10分钟,它由clocksource_max_deferment进行计算,并保存max_idle_ns字段中,tickless的代码要考虑这个值,以防止在NO_HZ配置环境下,系统保持IDLE状态的时间过长。在这样,由10分钟这个假设的时间值,我们可以推算出合适的mult和shift值。

2.  clocksource的注册和初始化

通常,clocksource要在初始化阶段通过clocksource_register_hz函数通知内核它的工作时钟的频率,调用的过程如下:

由上图可见,最终大部分工作会转由__clocksource_register_scale完成,该函数首先完成对mult和shift值的计算,然后根据mult和shift值,最终通过clocksource_max_deferment获得该clocksource可接受的最大IDLE时间,并记录在clocksource的max_idle_ns字段中。clocksource_enqueue函数负责按clocksource的rating的大小,把该clocksource按顺序挂在全局链表clocksource_list上,rating值越大,在链表上的位置越靠前。

每次新的clocksource注册进来,都会触发clocksource_select函数被调用,它按照rating值选择最好的clocksource,并记录在全局变量curr_clocksource中,然后通过timekeeping_notify函数通知timekeeping,当前clocksource已经变更,关于timekeeping,我将会在后续的博文中阐述。

3.  clocksource watchdog

系统中可能同时会注册对个clocksource,各个clocksource的精度和稳定性各不相同,为了筛选这些注册的clocksource,内核启用了一个定时器用于监控这些clocksource的性能,定时器的周期设为0.5秒:

[cpp] view plain copy

  1. #define WATCHDOG_INTERVAL (HZ >> 1)
  2. #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)

当有新的clocksource被注册时,除了会挂在全局链表clocksource_list外,还会同时挂在一个watchdog链表上:watchdog_list。定时器周期性地(0.5秒)检查watchdog_list上的clocksource,WATCHDOG_THRESHOLD的值定义为0.0625秒,如果在0.5秒内,clocksource的偏差大于这个值就表示这个clocksource是不稳定的,定时器的回调函数通过clocksource_watchdog_kthread线程标记该clocksource,并把它的rate修改为0,表示精度极差。

4.  建立clocksource的简要过程

在系统的启动阶段,内核注册了一个基于jiffies的clocksource,代码位于kernel/time/jiffies.c:

[cpp] view plain copy

  1. struct clocksource clocksource_jiffies = {
  2. .name       = "jiffies",
  3. .rating     = 1, /* lowest valid rating*/
  4. .read       = jiffies_read,
  5. .mask       = 0xffffffff, /*32bits*/
  6. .mult       = NSEC_PER_JIFFY << JIFFIES_SHIFT, /* details above */
  7. .shift      = JIFFIES_SHIFT,
  8. };
  9. ......
  10. static int __init init_jiffies_clocksource(void)
  11. {
  12. return clocksource_register(&clocksource_jiffies);
  13. }
  14. core_initcall(init_jiffies_clocksource);

它的精度只有1/HZ秒,rating值为1,如果平台的代码没有提供定制的clocksource_default_clock函数,它将返回该clocksource:

[cpp] view plain copy

  1. struct clocksource * __init __weak clocksource_default_clock(void)
  2. {
  3. return &clocksource_jiffies;
  4. }

然后,在初始化的后段,clocksource的代码会把全局变量curr_clocksource设置为上述的clocksource:

[cpp] view plain copy

  1. static int __init clocksource_done_booting(void)
  2. {
  3. ......
  4. curr_clocksource = clocksource_default_clock();
  5. ......
  6. finished_booting = 1;
  7. ......
  8. clocksource_select();
  9. ......
  10. return 0;
  11. }
  12. fs_initcall(clocksource_done_booting);

当然,如果平台级的代码在初始化时也会注册真正的硬件clocksource,所以经过clocksource_select()函数后,curr_clocksource将会被设为最合适的clocksource。如果clocksource_select函数认为需要切换更好的时钟源,它会通过timekeeping_notify通知timekeeping系统,使用新的clocksource进行时间计数和更新操作。

时间: 2024-08-05 11:10:03

Linux时间子系统之一:clock source(时钟源)【转】的相关文章

Linux时间子系统之八:动态时钟框架(CONFIG_NO_HZ、tickless)

在前面章节的讨论中,我们一直基于一个假设:Linux中的时钟事件都是由一个周期时钟提供,不管系统中的clock_event_device是工作于周期触发模式,还是工作于单触发模式,也不管定时器系统是工作于低分辨率模式,还是高精度模式,内核都竭尽所能,用不同的方式提供周期时钟,以产生定期的tick事件,tick事件或者用于全局的时间管理(jiffies和时间的更新),或者用于本地cpu的进程统计.时间轮定时器框架等等.周期性时钟虽然简单有效,但是也带来了一些缺点,尤其在系统的功耗上,因为就算系统目

Linux时间子系统(十七) ARM generic timer驱动代码分析

一.前言 关注ARM平台上timer driver(clocksource chip driver和clockevent chip driver)的驱动工程师应该会注意到timer硬件的演化过程.在单核时代,各个SOC vendor厂商购买ARM core的IP,然后自己设计SOC上的peripherals,这里面就包括了timer的硬件.由于没有统一的标准,各个厂商的设计各不相同,这给驱动工程师带来了工作量.然而,如果仅仅是工作量的话就还好,实际上,不仅仅如此.linux的时间子系统要求硬件t

Linux时间子系统专题汇总

DroidPhone关于Linux时间子系统专题: http://blog.csdn.net/DroidPhone/article/category/1263459 Linux时间子系统之一:clock source(时钟源) Linux时间子系统之二:表示时间的单位和结构 Linux时间子系统之三:时间的维护者:timekeeper Linux时间子系统之四:定时器的引擎:clock_event_device Linux时间子系统之五:低分辨率定时器的原理和实现 Linux时间子系统之六:高精

Linux时间子系统(十五) clocksource

一.前言 和洋葱一样,软件也是有层次的,内核往往需要对形形色色的某类型的驱动进行抽象,屏蔽掉其具体的特质,获取该类驱动共同的逻辑,而又根据这些逻辑撰写该类驱动的抽象层.嵌入式系统总是会提供timer的硬件block,软件需要对timer硬件提供的功能进行抽象:linux kernel将timer类型的硬件抽象成两个组件,一是free running的counter,另外一个是指定的counter值上产生中断的能力.本文主要描述第一个组件,在内核中被称作clock source. 二.什么是clo

Linux时间子系统(一) 基本概念

本文使用Q & A的方式来和大家以前探讨一下时间的基本概念 一.什么是时间? 这个问题实在是太复杂了,我都不知道这是一个物理学.宇宙学.还是热力学异或是哲学问题,我只是想从几个侧面来了解一下时间这个概念.本节内容都是我坐在公交车上瞎想的,对物理学有兴趣的人可以指出我的错误(一个搞linux kernel的人不会有太深刻的物理学知识的),对Linux时间子系统有兴趣的人还是忽略这个小节吧. 1.时间和空间以及相对性 有没有绝对时间的概念呢?时间是否是独立于一切存在的呢?相信有绝对时间的存在比较符合

Linux时间子系统(十四) tick broadcast framework

一.前言 在内核中,有cpuidle framework可以控制cpu的节电:当没有进程调度到该cpu上执行的时候,swapper进程粉墨登场,将该cpu会被推入到idle状态.当然CPU的idle状态有深有浅,当CPU睡的比较深入的时候,有可能会关闭本地的timer硬件.这样就会引入一个很有意思的问题:local timer将无法唤醒CPU,该cpu上的所有的software timer将无法唤醒cpu.tick broadcast framework就是用来解决这个问题的. 本文中的代码来自

Linux时间子系统之六:高精度定时器(HRTIMER)的原理和实现

上一篇文章,我介绍了传统的低分辨率定时器的实现原理.而随着内核的不断演进,大牛们已经对这种低分辨率定时器的精度不再满足,而且,硬件也在不断地发展,系统中的定时器硬件的精度也越来越高,这也给高分辨率定时器的出现创造了条件.内核从2.6.16开始加入了高精度定时器架构.在实现方式上,内核的高分辨率定时器的实现代码几乎没有借用低分辨率定时器的数据结构和代码,内核文档给出的解释主要有以下几点: 低分辨率定时器的代码和jiffies的关系太过紧密,并且默认按32位进行设计,并且它的代码已经经过长时间的优化

Linux时间子系统(五) POSIX Clock

一.前言 clock是timer的基础,任何一个timer都需要运作在一个指定的clock上来.内核中维护了若干的clock,本文第二章描述了clock的基本概念和一些静态定义的posix clock.根据计时的特点,clock分成两种:一种是真实世界的时间概念,另外一个是仅仅计算CPU执行时间 ,这两种clock分别在第三和第四章描述.从clock的生命周期来看,可以分成静态和动态的posix clock,静态是一直存在于内核中的,而动态clock有创建和销毁的概念,本文第五章描述了dynam

Linux时间子系统(二) 软件架构

一.前言 本文的主要内容是描述内核时间子系统的软件框架.首先介绍了从旧的时间子系统迁移到新的时间子系统的源由,介绍新的时间子系统的优势.第三章汇整了时间子系统的相关文件以及内核配置.最后描述各种内核配置下的时间子系统的数据流和控制流. 二.背景介绍 1.传统内核时间子系统的软件架构 让我们先回到远古的2.4内核时代,其内核的时间子系统的软件框架如下: 首先,在每个architecture相关的代码中要有实现clock event和clock source模块.这里听起来名字是高大上,实际上,这里