MongoDB索引使用

??

索引简介


MongoDB同传统数据库索引一样,同样使用的是B-tree索引,绝大多数优化MySQL/Oracle/SQLlite索引技术也同样适用于MongoDB.
创建索引使用ensureIndex方法

创建普通索引


> db.users1.find()
{ "_id" : 1, "username" : "smith", "age" : 48, "user_id" : 0 }
{ "_id" : 2, "username" : "smith", "age" : 30, "user_id" : 1 }
{ "_id" : 3, "username" : "john", "age" : 36, "user_id" : 2 }
{ "_id" : 4, "username" : "john", "age" : 18, "user_id" : 3 }
{ "_id" : 5, "username" : "joe", "age" : 36, "user_id" : 4 }
{ "_id" : 6, "username" : "john", "age" : 7, "user_id" : 5 }
{ "_id" : 7, "username" : "simon", "age" : 3, "user_id" : 6 }
{ "_id" : 8, "username" : "joe", "age" : 27, "user_id" : 7 }
{ "_id" : 9, "username" : "jacob", "age" : 17, "user_id" : 8 }
{ "_id" : 10, "username" : "sally", "age" : 52, "user_id" : 9 }
{ "_id" : 11, "username" : "simon", "age" : 59, "user_id" : 10 }

--在username字段上创建正序索引
> db.users1.ensureIndex({"username":1})

--对下面查询创建有效索引
> db.people.find({"date" : date1}).sort({"date" : 1, "username" : 1})
> db.people.ensureIndex({"date" : 1, "username" : 1})

创建索引内嵌文档索引


--内嵌文档如下
> db.blog.posts.findOne({"comments.name":"licz"})
{
        "_id" : ObjectId("4b2d75476cc613d5ee930164"),
        "comments" : [
                {
                        "content" : "nice post.",
                        "date" : ISODate("2016-02-17T08:01:43.813Z"),
                        "email" : "[email protected]",
                        "name" : "joe",
                        "visits" : 1
                },
                {
                        "content" : "good post.",
                        "date" : ISODate("2016-02-17T08:00:45.746Z"),
                        "email" : "[email protected]",
                        "name" : "licz"
                }
        ],
        "content" : "...",
        "title" : "A blog post"
}
> db.bolg.posts.ensureIndex({"comments.date":1})

创建唯一索引


> db.people.ensureIndex({"username" : 1}, {"unique" : true})

--消除重复
当为已有的集合中创建唯一索引时,可能一些已经重复了。这时创建索引会失败,有时可能需要把重复的文档都删掉,dropDups选项就可以保留发现的第一个文档,而删除有重复的文档。
> db.people.ensureIndex({"username" : 1}, {"unique" : true, "dropDups" : true})

使用explain和hint
explain会返回查询使用索引的情况,耗时及扫描文档的统计信息。
> db.users1.find({"username":"joe"})
{ "_id" : 5, "username" : "joe", "age" : 36, "user_id" : 4 }
{ "_id" : 8, "username" : "joe", "age" : 27, "user_id" : 7 }
> db.users1.find({"username":"joe"}).explain()
{
        "cursor" : "BtreeCursor username_1",
        "isMultiKey" : false,
        "n" : 2,
        "nscannedObjects" : 2,
        "nscanned" : 2,
        "nscannedObjectsAllPlans" : 2,
        "nscannedAllPlans" : 2,
        "scanAndOrder" : false,
        "indexOnly" : false,
        "nYields" : 0,
        "nChunkSkips" : 0,
        "millis" : 3,
        "indexBounds" : {
                "username" : [
                        [
                                "joe",
                                "joe"
                        ]
                ]
        },
        "server" : "racdb:27017"
}

如果发现MongoDB使用了非预期的索引,可以使用hint强制使用某个索引。如:
> db.c.find({"age" : 14, "username" : /.*/}).hint({"username" : 1, "age" : 1})

和Oracle中使用hint一样,hint多数情况下是没必要指定的。因为MongoDB非常智能,会替你选择选择使用如个索引。

管理索引


索引元信息都在system.indexes集合中
> db.system.indexes.find()
{ "v" : 1, "key" : { "_id" : 1 }, "name" : "_id_", "ns" : "test.my_collection" }
{ "v" : 1, "key" : { "x" : 1 }, "name" : "x_1", "ns" : "test.my_collection" }
{ "v" : 1, "key" : { "_id" : 1 }, "name" : "_id_", "ns" : "test.people" }
......
{ "v" : 1, "key" : { "_id" : 1 }, "name" : "_id_", "ns" : "test.stocks" }
{ "v" : 1, "name" : "username_1", "key" : { "username" : 1 }, "ns" : "test.users1" }
{ "v" : 1, "name" : "_id_", "key" : { "_id" : 1 }, "ns" : "test.bolg.posts" }
{ "v" : 1, "name" : "comments.date_1", "key" : { "comments.date" : 1 }, "ns" : "test.bolg.posts" }

--删除索引
> db.users1.dropIndexes({"username":1})
{
        "nIndexesWas" : 2,
        "msg" : "non-_id indexes dropped for collection",
        "ok" : 1
}

--或是使用runCommand命令删除索引
> db.runCommand({"dropIndexes":"bolg.posts","index":"comments.date_1"})
{ "nIndexesWas" : 2, "ok" : 1 }

--修改索引(重建索引)
当原来的索引不好用时,需要重建索引,这时可以使用backgroud选项使创建过程在后台运行,这样会避免数据库产生阻塞。
> db.users1.ensureIndex({username:1},{backgroud:true})

地理空间索引


还有一查询变得越来越流行:要找到离当前位置最近的N个场所,如要找到给定经纬度坐标周围最近的咖啡馆。
MongoDB为坐标平面提供了专门的索引,称作:地理空间索引
同样可以用ensureIndex来创建,只不过参数不是1或-1,而是"2d"
db.map.ensureIndex({"gps":"2d"})
"gps"必需是某种形式的一对值:一个包含两个元素的数组或是包含两个键的内嵌文档;键值名可以任意。如下:
{ "gps" : [ 0, 100 ] }
{ "gps" : { "x" : -30, "y" : 30 } }
{ "gps" : { "latitude" : -180, "longitude" : 180 } }

默认情况下地理空间的范围是-180~180(经纬度),要想用其它值,可以通过ensureIndex选项指定最大最小值:
> db.star.trek.ensureIndex({"light-years" : "2d"}, {"min" : -1000, "max" : 1000})
这样就创建了一个2000光年见方的索引。

地理空间查询方法


使用$near
返回离[40, -73]最近的10个文档
> db.map.find({"gps" : {"$near" : [40, -73]}}).limit(10)
或是:
> db.runCommand({geoNear : "map", near : [40, -73], num : 10});

查找指定开头内的文档
即将原来的$near换成$within
$within形状参数文档(http://www.mongodb.org/display/DOCS/Geospatial+Indexing)
矩形:使用"$box"
> db.map.find({"gps" : {"$within" : {"$box" : [[10, 20], [15, 30]]}}})
圆形:使用"$center"
> db.map.find({"gps" : {"$within" : {"$center" : [[12, 25], 5]}}})

复合地理空间索引


应用经常要找的东西不只是一个地点。例如,用户要找出周围所有的咖啡店或披萨店。将地理空间索引与普通索引组合起来就可以满足这种需求。
例如,要查询"location"和"desc",就可以这样创建索引:

> db.ensureIndex({"location" : "2d", "desc" : 1})

然后就可能很快找到最近的咖啡馆了

> db.map.find({"location" : {"$near" : [-70, 30]}, "desc" : "coffeeshop"}).limit(1)
{
"_id" : ObjectId("4c0d1348928a815a720a0000"),
"name" : "Mud",
"location" : [x, y],
"desc" : ["coffee", "coffeeshop", "muffins", "espresso"]
}

注意:创建一个关键词组对于用户自定义查找很有帮助。

时间: 2024-12-25 03:35:52

MongoDB索引使用的相关文章

菜鸟的mongoDB学习---(六)MongoDB 索引

MongoDB 索引 ps:大概有半个月木有更新了,因为前一阶段的出差和这几天突然来的项目.导致上网时间急剧降低,实在是sorry,以后预计会好一点. 索引通常可以极大的提高查询的效率.假设没有索引.MongoDB在读取数据时必须扫描集合中的每一个文件并选取那些符合查询条件的记录. 这样的扫描全集合的查询效率是很低的,特别在处理大量的数据时,查询能够要花费几十秒甚至几分钟,这对站点的性能是很致命的. 索引是特殊的数据结构,索引存储在一个易于遍历读取的数据集合中.索引是对数据库表中一列或多列的值进

MongoDB 索引的使用, 管理 和优化

MongoDB 索引的使用, 管理 和优化 2014-03-25 17:12 6479人阅读 评论(0) 收藏 举报  分类: MongoDB(9)  [使用explain和hint] 前面讲高级查询选项时,提到过"$explain" 和 ”$hint“可以作为包装查询的选项关键字使用,其实这两个本身就可以作为操作游标的函数调用!游标调用explain函数会返回一个文档,用于描述当前查询的一些细节信息.这也不同于我们前面介绍的游标函数,前面提到的游标处理函数都是返回游标,可组成方法链调

MongoDB(索引及C#如何操作MongoDB)(转载)

MongoDB(索引及C如何操作MongoDB) 索引总概况 db.test.ensureIndex({"username":1})//创建索引 db.test.ensureIndex({"username":1, "age":-1})//创建复合索引 数字1表示username键的索引按升序存储,-1表示age键的索引按照降序方式存储. // 该索引被创建后,基于username和age的查询将会用到该索引,或者是基于username的查询也会

MongoDB索引管理

虽然MongoDB的索引在存储结构上都是一样的,但是根据不同的应用层需求,还是分成了唯一索引(unique).稀疏索引(sparse).多值索引(multikey)等几种类型. 唯一索引 唯一索引在创建时加上 unique:true 的选项即可,创建命令如下: db.users.ensureIndex({username: 1}, {unique: true}) 上面的唯一索引创建后,如果insert一条username已经存在的数据,则会报如下的错误: E11000 duplicate key

MongoDB索引文件破坏后导致查询错误的问题

问题描述: MongoDB在非正常情况下关闭时,可能会导致索引文件破坏,造成数据在更新时没有反映到索引上. 解决方案: 使用脚本,重建MongoDB所有表的索引. var names  = db.getCollectionNames(); for( var i in names ){     var name = names[i];     print(name);          var coll = db.getCollection(name);     coll.reIndex(); }

MongoDB索引的种类与使用

一:索引的种类 1:_id索引:是绝大多数集合默认建立的索引,对于每个插入的数据,MongoDB都会自动生成一条唯一的_id字段2:单键索引: 1.单键索引是最普通的索引 2.与_id索引不同,单键索引不会自动创建 如:一条记录,形式为:{x:1,y:2,z:3} db.imooc_2.getIndexes()//查看索引 db.imooc_2.ensureIndex({x:1})//创建索引,索引可以重复创建,若创建已经存在的索引,则会直接返回成功. db.imooc_2.find()//查看

MongoDB · 引擎特性 · MongoDB索引原理

MongoDB · 引擎特性 · MongoDB索引原理数据库内核月报原文链接 http://mysql.taobao.org/monthly/2018/09/06/ 为什么需要索引?当你抱怨MongoDB集合查询效率低的时候,可能你就需要考虑使用索引了,为了方便后续介绍,先科普下MongoDB里的索引机制(同样适用于其他的数据库比如mysql). mongo-9552:PRIMARY> db.person.find(){ "_id" : ObjectId("571b5

005.MongoDB索引及聚合

一 MongoDB 索引 索引通常能够极大的提高查询的效率,如果没有索引,MongoDB在读取数据时必须扫描集合中的每个文件并选取那些符合查询条件的记录. 这种扫描全集合的查询效率是非常低的,特别在处理大量的数据时,查询可以要花费几十秒甚至几分钟,这对网站的性能是非常致命的. 索引是特殊的数据结构,索引存储在一个易于遍历读取的数据集合中,索引是对数据库表中一列或多列的值进行排序的一种结构. 1.1 createIndex() 方法 MongoDB使用 createIndex() 方法来创建索引.

Mongodb索引和执行计划 hint 慢查询

查询索引 索引存放在system.indexes集合中 > show tables address data person system.indexes 默认会为所有的ID建上索引 而且无法删除 > db.system.indexes.find() { "v" : 1, "key" : { "_id" : 1 }, "name" : "_id_", "ns" : "

【MongoDB】03、MongoDB索引及分片

一.MongoDB配置 mongodb配置文件/etc/mongodb.conf中的配置项,其实都是mongod启动选项(和memcached一样) [[email protected] ~]# mongod --help Allowed options: General options:   -h [ --help ]               show this usage information   --version                   show version inf