【边框回归】边框回归(Bounding Box Regression)详解(转)

转自:打开链接

Bounding-Box regression

最近一直看检测有关的Paper, 从rcnn, fast rcnn, faster rcnn, yolo, r-fcn, ssd,到今年cvpr最新的yolo9000。这些paper中损失函数都包含了边框回归,除了rcnn详细介绍了,其他的paper都是一笔带过,或者直接引用rcnn就把损失函数写出来了。前三条网上解释比较多,后面的两条我看了很多paper,才得出这些结论。

  • 为什么要边框回归?
  • 什么是边框回归?
  • 边框回归怎么做的?
  • 边框回归为什么宽高,坐标会设计这种形式?
  • 为什么边框回归只能微调,在离Ground Truth近的时候才能生效?

为什么要边框回归?

这里引用王斌师兄的理解,如下图所示:

对于上图,绿色的框表示Ground Truth, 红色的框为Selective Search提取的Region Proposal。那么即便红色的框被分类器识别为飞机,但是由于红色的框定位不准(IoU<0.5), 那么这张图相当于没有正确的检测出飞机。 如果我们能对红色的框进行微调, 使得经过微调后的窗口跟Ground Truth 更接近, 这样岂不是定位会更准确。 确实,Bounding-box regression 就是用来微调这个窗口的。

边框回归是什么?

继续借用师兄的理解:对于窗口一般使用四维向量(x,y,w,h) 来表示, 分别表示窗口的中心点坐标和宽高。 对于图 2, 红色的框 P 代表原始的Proposal, 绿色的框 G 代表目标的 Ground Truth, 我们的目标是寻找一种关系使得输入原始的窗口 P 经过映射得到一个跟真实窗口 G 更接近的回归窗口

对于IoU大于指定值这块,我并不认同作者的说法。我个人理解,只保证Region Proposal和Ground Truth的宽高相差不多就能满足回归条件。x,y位置到没有太多限制,这点我们从YOLOv2可以看出,原始的边框回归其实x,y的位置相对来说对很大的。这也是YOLOv2的改进地方。详情请参考我的博客YOLOv2

总结

里面很多都是参考师兄在caffe社区的回答,本来不想重复打字的,但是美观的强迫症,让我手动把latex公式巴拉巴拉敲完,当然也为了让大家看起来顺眼。后面还有一些公式那块资料很少,是我在阅读paper+个人总结,不对的地方还请大家留言多多指正。

原文地址:https://www.cnblogs.com/kk17/p/9695446.html

时间: 2024-10-22 16:14:09

【边框回归】边框回归(Bounding Box Regression)详解(转)的相关文章

目标检测中bounding box regression

https://zhuanlan.zhihu.com/p/26938549 RCNN实际包含两个子步骤,一是对上一步的输出向量进行分类(需要根据特征训练分类器):二是通过边界回归(bounding-box regression) 得到精确的目标区域,由于实际目标会产生多个子区域,旨在对完成分类的前景目标进行精确的定位与合并,避免多个检出. fast rcnn中SoftmaxLoss代替了SVM,证明了softmax比SVM更好的效果,SmoothL1Loss取代Bouding box回归.将分类

Windows渗透利器之Pentest BOX使用详解(一)

内容概览:                                     知识科普                                    优缺点总结 功能参数详解翻译: 控制台参数详解翻译 setting各项功能参数翻译详解: 基本设置(含外观,字体,标签栏等设置) 启动设置(含任务栏其他等) 特征 综合参数 宏设置 文本管理器 基础信息 知识科普: Pentest Box在2015年发布,具体月份不详.Pentest Box开源项目的创始人是Aditya Agrawa

第二十九节,目标检测算法之Fast R-CNN算法详解

Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE International Conference on Computer Vision. 2015. 继2014年的RCNN之后,Ross Girshick在15年推出Fast RCNN,构思精巧,流程更为紧凑,大幅提升了目标检测的速度.在Github上提供了源码. 之所以提出Fast R-CNN,主要是因为R-CNN存在以下几个问题: 训练分多步.通过上一篇博文我们知道R-CN

6. 目标检测算法之Fast R-CNN算法详解(转)

6. 目标检测算法之Fast R-CNN算法详解(转) 原文链接:https://www.cnblogs.com/zyly/p/9246418.html 目录 一 Fast R-CNN思想 问题一:测试时速度慢 问题二:训练时速度慢 问题三:训练所需空间大 二 算法简述 三 算法详解 1.ROI池化层 2.训练 3.训练样本 4.损失函数 [8]目标检测(4)-Fast R-CNN Girshick, Ross. "Fast r-cnn." Proceedings of the IEE

Bounding Box回归

简介 Bounding Box非常重要,在rcnn, fast rcnn, faster rcnn, yolo, r-fcn, ssd,到今年cvpr最新的yolo9000都会用到. 先看图 对于上图,绿色的框表示Ground Truth, 红色的框为Selective Search提取的Region Proposal.那么即便红色的框被分类器识别为飞机,但是由于红色的框定位不准(IoU<0.5),那么这张图相当于没有正确的检测出飞机. 如果我们能对红色的框进行微调, 使得经过微调后的窗口跟Gr

DeepLearning tutorial(1)Softmax回归原理简介+代码详解

DeepLearning tutorial(1)Softmax回归原理简介+代码详解 @author:wepon @blog:http://blog.csdn.net/u012162613/article/details/43157801 本文介绍Softmax回归算法,特别是详细解读其代码实现,基于python theano,代码来自:Classifying MNIST digits using Logistic Regression,参考UFLDL. 一.Softmax回归简介 关于算法的详

机器学习经典算法详解及Python实现--CART分类决策树、回归树和模型树

摘要: Classification And Regression Tree(CART)是一种很重要的机器学习算法,既可以用于创建分类树(Classification Tree),也可以用于创建回归树(Regression Tree),本文介绍了CART用于离散标签分类决策和连续特征回归时的原理.决策树创建过程分析了信息混乱度度量Gini指数.连续和离散特征的特殊处理.连续和离散特征共存时函数的特殊处理和后剪枝:用于回归时则介绍了回归树和模型树的原理.适用场景和创建过程.个人认为,回归树和模型树

【转载】偏最小二乘法回归(Partial Least Squares Regression)

偏最小二乘法回归(Partial Least Squares Regression) [pdf版本]偏最小二乘法回归.pdf 1. 问题 这节我们请出最后的有关成分分析和回归的神器PLSR.PLSR感觉已经把成分分析和回归发挥到极致了,下面主要介绍其思想而非完整的教程.让我们回顾一下最早的Linear Regression的缺点:如果样例数m相比特征数n少(m<n)或者特征间线性相关时,由于(n*n矩阵)的秩小于特征个数(即不可逆).因此最小二乘法就会失效. 为了解决这个问题,我们会使用PCA对

css3:border-radius圆角边框详解 (变圆 图片)

转:http://www.kuqin.com/shuoit/20141014/342620.html border-radius:50% 今天来聊聊这个border-radius属性,radius的英文意思是弧度的意思,而国人更喜欢称之为圆角,因为它可以使得我们的边框有棱有角.当年前辈们都是用图片君搞定圆角的年代或用一条条边框构造的年代已经一去不复返,而移动互联网的高速发展为border-radius属性的飞速发展,so今天就来聊聊圆角边框.虽然英文翻译过来叫做半径弧度,但是为了能让大家更加熟悉