Chapter 6 链表(上):如何实现LRU缓存淘汰算法?

缓存淘汰策略:

一、什么是链表?

1.和数组一样,链表也是一种线性表。

2.从内存结构来看,链表的内存结构是不连续的内存空间,是将一组零散的内存块串联起来,从而进行数据存储的数据结构。

3.链表中的每一个内存块被称为节点Node。节点除了存储数据外,还需记录链上下一个节点的地址,即后继指针next。

二、为什么使用链表?即链表的特点

1.插入、删除数据效率高O(1)级别(只需更改指针指向即可),随机访问效率低O(n)级别(需要从链头至链尾进行遍历)。

2.和数组相比,内存空间消耗更大,因为每个存储数据的节点都需要额外的空间存储后继指针。

三、常用链表:单链表、循环链表和双向链表

1.单链表

1)每个节点只包含一个指针,即后继指针。

2)单链表有两个特殊的节点,即首节点和尾节点。为什么特殊?用首节点地址表示整条链表,尾节点的后继指针指向空地址null。

3)性能特点:插入和删除节点的时间复杂度为O(1),查找的时间复杂度为O(n)。

2.循环链表

1)除了尾节点的后继指针指向首节点的地址外均与单链表一致。

2)适用于存储有循环特点的数据,比如约瑟夫问题。

3.双向链表

1)节点除了存储数据外,还有两个指针分别指向前一个节点地址(前驱指针prev)和下一个节点地址(后继指针next)。

2)首节点的前驱指针prev和尾节点的后继指针均指向空地址。

3)性能特点:

和单链表相比,存储相同的数据,需要消耗更多的存储空间。

插入、删除操作比单链表效率更高O(1)级别。以删除操作为例,删除操作分为2种情况:给定数据值删除对应节点和给定节点地址删除节点。对于前一种情况,单链表和双向链表都需要从头到尾进行遍历从而找到对应节点进行删除,时间复杂度为O(n)。对于第二种情况,要进行删除操作必须找到前驱节点,单链表需要从头到尾进行遍历直到p->next = q,时间复杂度为O(n),而双向链表可以直接找到前驱节点,时间复杂度为O(1)。

对于一个有序链表,双向链表的按值查询效率要比单链表高一些。因为我们可以记录上次查找的位置p,每一次查询时,根据要查找的值与p的大小关系,决定是往前还是往后查找,所以平均只需要查找一半的数据。

4.双向循环链表:首节点的前驱指针指向尾节点,尾节点的后继指针指向首节点。

四、选择数组还是链表?

1.插入、删除和随机访问的时间复杂度

数组:插入、删除的时间复杂度是O(n),随机访问的时间复杂度是O(1)。

链表:插入、删除的时间复杂度是O(1),随机访问的时间复杂端是O(n)。

2.数组缺点

1)若申请内存空间很大,比如100M,但若内存空间没有100M的连续空间时,则会申请失败,尽管内存可用空间超过100M。

2)大小固定,若存储空间不足,需进行扩容,一旦扩容就要进行数据复制,而这时非常费时的。

3.链表缺点

1)内存空间消耗更大,因为需要额外的空间存储指针信息。

2)对链表进行频繁的插入和删除操作,会导致频繁的内存申请和释放,容易造成内存碎片,如果是Java语言,还可能会造成频繁的GC(自动垃圾回收器)操作。

4.如何选择?

数组简单易用,在实现上使用连续的内存空间,可以借助CPU的缓冲机制预读数组中的数据,所以访问效率更高,而链表在内存中并不是连续存储,所以对CPU缓存不友好,没办法预读。

如果代码对内存的使用非常苛刻,那数组就更适合。

原文地址:https://www.cnblogs.com/zhaohu/p/9975000.html

时间: 2024-08-11 07:17:37

Chapter 6 链表(上):如何实现LRU缓存淘汰算法?的相关文章

06 | 链表(上):如何实现LRU缓存淘汰算法?

我们先来讨论一个经典的链表应用场景,那就是 LRU 缓存淘汰算法. 缓存的大小有限,当缓存被用满时,哪些数据应该被清理出去,哪些数据应该被保留?这就需要缓存淘汰策略来决定. 常见的策略有三种: 先进先出策略 FIFO(First In,First Out).最少使用策略 LFU(Least Frequently Used).最近最少使用策略 LRU(Least Recently Used). 三种最常见的链表结构,它们分别是:单链表.双向链表和循环链表. 数组简单易用,在实现上使用的是连续的内存

缓存淘汰算法---LRU

1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是"如果数据最近被访问过,那么将来被访问的几率也更高". 1.2. 实现 最常见的实现是使用一个链表保存缓存数据,详细算法实现如下: 1. 新数据插入到链表头部: 2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部: 3. 当链表满的时候,将链表尾部的数据丢弃. 1.3. 分析 [命中率] 当存在热点数据时,LRU的效率很好,但偶发性的

缓存淘汰算法系列(一)

一.前言 缓存算法历史已经很久了,但在楼主查询相关资料时,发现知识零碎,且原理介绍的很不详细,遂有了总结常用缓存算法文章的想法,以供广大朋友们查阅.本文是缓存系列的第一篇,知识侧重于初略的介绍,并未深入. 二.NRU(Not recently used) 1.算法思想 NRU算法的思想是保留最近使用过的对象. 2.工作原理 缓存维护两个标记位,初始值为0.一个标记位R标识对象是否被使用过,另一个M用来标识对象是否被修改过.当一个对象在缓存中找到时,R置为1(referenced);当一个对象被修

图解缓存淘汰算法三之FIFO

1.概念分析 FIFO(First In First Out),即先进先出.最先进入的数据,最先出来.一个很简单的算法.只要使用队列数据结构即可实现.那么FIFO淘汰算法基于的思想是"最近刚访问的,将来访问的可能性比较大".看了这三个算法,大家对淘汰的理解,我想一定深入了不少,基于一种对未来可能性的推断上. 2.原理分析 FIFO的淘汰过程与传送带的方式类似,最先放到传送带上的数据会最先被淘汰.如下图中的A. 3.优略分析 [命中率] 命中率较低,不推荐使用. [复杂度] 非常简单.

缓存淘汰算法--LRU算法

1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是"如果数据最近被访问过,那么将来被访问的几率也更高". 1.2. 实现 最常见的实现是使用一个链表保存缓存数据,详细算法实现如下: 1. 新数据插入到链表头部: 2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部: 3. 当链表满的时候,将链表尾部的数据丢弃. 1.3. 分析 [命中率] 当存在热点数据时,LRU的效率很好,但偶发性的

【leetcode】:LRU Cache_缓存淘汰算法LRU的设计与实现

内存淘汰算法是一个比较重要的算法,经常会被问道:如果让你设计一个LRU算法你会怎么做?尽可能的保持存取的高效.那么就依着这道算法题对LRU进行一个简单的介绍. 题目地址:https://oj.leetcode.com/problems/lru-cache/ 1.什么是LRU算法?为什么使用LRU? LRU即Least Recently Used的缩写,即最近最少使用的意思.我们知道在内存空间是有限的,那么当内存被数据占满的时候,而需要访问的数据又不在内存中,那么就需要将内存中的最少使用的数据淘汰

【转】缓存淘汰算法系列之1——LRU类

原文地址:http://www.360doc.com/content/13/0805/15/13247663_304901967.shtml 参考地址(一系列关于缓存的,后面几篇也都在这里有):http://www.360doc.com/userhome.aspx?userid=13247663&cid=48# 1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几

缓存淘汰算法之LRU

1. LRU 1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是"如果数据最近被访问过,那么将来被访问的几率也更高". 1.2. 实现 最常见的实现是使用一个链表保存缓存数据,详细算法实现如下: 1. 新数据插入到链表头部: 2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部: 3. 当链表满的时候,将链表尾部的数据丢弃. 1.3. 分析 [命中率] 当存在热点数据时,LRU的效率很好,但偶发性

两种缓存淘汰算法LFU&LRU

LRU全称是Least Recently Used,即最近最久未使用的意思. LRU算法的设计原则是:如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小.也就是说,当限定的空间已存满数据时,应当把最久没有被访问到的数据淘汰. 实现LRU 1.用一个数组来存储数据,给每一个数据项标记一个访问时间戳,每次插入新数据项的时候,先把数组中存在的数据项的时间戳自增,并将新数据项的时间戳置为0并插入到数组中.每次访问数组中的数据项的时候,将被访问的数据项的时间戳置为0.当数组空间已满时