tf.nn.dropout

tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None)

此函数是为了防止在训练中过拟合的操作,将训练输出按一定规则进行变换.

参数:

x:输入

keep_prob:保留比例,取值 (0,1] 。每一个参数都将按这个比例随机变更。

noise_shape:干扰形状。此字段默认是None,表示第一个元素的操作都是独立,但是也不一定。比例:数据的形状是shape(x)=[k, l, m, n],而noise_shape=[k, 1, 1, n],则第1和4列是独立保留或删除,第2和3列是要么全部保留,要么全部删除。

返回:Tnesor

原文地址:https://www.cnblogs.com/wzdLY/p/10066511.html

时间: 2024-10-05 07:30:28

tf.nn.dropout的相关文章

TensorFlow之tf.nn.dropout():防止模型训练过程中的过拟合问题

一:适用范围: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层 二:原理: dropout就是在不同的训练过程中随机扔掉一部分神经元.也就是让某个神经元的激活值以一定的概率p,让其停止工作,这次训练过程中不更新权值,也不参加神经网络的计算.但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了 三:函数介绍: tf.nn.drop(x,  keep_prob, noise_shape=None, seed=Non

tf.nn.dropout()介绍

1.Dropout原理简述: Dropout就是在不同的训练过程中随机扔掉一部分神经元.也就是让某个神经元的激活值以一定的概率p,让其停止工作,这次训练过程中不更新权值,也不参加神经网络的计算.但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了.示意图如下: 但在测试及验证中:每个神经元都要参加运算,但其输出要乘以概率p. 2.tf.nn.dropout(x,keep_prob,noise_shape=None,seed=None,name=None)函数说明 上面

TF-tf.nn.dropout介绍

官方的接口是这样的 tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None) 根据给出的keep_prob参数,将输入tensor x按比例输出. 默认情况下, 每个元素保存或丢弃都是独立的.后面这段没太懂,以后懂了再补上: If noise_shape is specified, it must be broadcastable to the shape of x, and only dimensions with

tf.nn的conv2d卷积与max_pool池化

tf.nn.conv2d(value,filter,strides,[...]) 对于图片来说 value :   形状通常是np.array()类型的4维数组也称tensor(张量),  (batch,height,width,channels) 可以理解为(图片样本的个数,高,宽,图片的颜色通道数) value是待卷积的数据 filter: 卷积核 -4元素元组[height,width,in_channels,out_channels],前面的3个参数和value的后面3个参数一一对应.但

深度学习原理与框架-CNN在文本分类的应用 1.tf.nn.embedding_lookup(根据索引数据从数据中取出数据) 2.saver.restore(加载sess参数)

1. tf.nn.embedding_lookup(W, X) W的维度为[len(vocabulary_list), 128], X的维度为[?, 8],组合后的维度为[?, 8, 128] 代码说明一下:即根据每一行X中的一个数,从W中取出对应行的128个数据,比如X[1, 3]个数据是3062,即从W中的第3062行取出128个数据 import numpy as np import tensorflow as tf data = np.array([[2, 1], [3, 4], [5,

tf.contrib.rnn.static_rnn与tf.nn.dynamic_rnn区别

tf.contrib.rnn.static_rnn与tf.nn.dynamic_rnn区别 https://blog.csdn.net/u014365862/article/details/78238807 MachineLP的Github(欢迎follow):https://github.com/MachineLP 我的GitHub:https://github.com/MachineLP/train_cnn-rnn-attention 自己搭建的一个框架,包含模型有:vgg(vgg16,vg

tf.nn.embedding_lookup()

一直想解决如果在tensorflow中按照需求组装向量,于是发现了这个函数 tf.nn.embedding_lookup(params, ids, partition_strategy=’mod’, name=None, validate_indices=True, max_norm=None) 除了前两个参数,其他参数暂时还不知道怎么使用.然而这并不影响实现程序. params放全部的向量,也就是在文本学习中的所有字符对应的向量 ids放置索引的数组,也就是要挑选出来的字符的索引号.

TF-卷积函数 tf.nn.conv2d 介绍

转自 http://www.cnblogs.com/welhzh/p/6607581.html 下面是这位博主自己的翻译加上测试心得 tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 除去name参数用以指定该操作的name,与方法有关

tf.nn.conv2d

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) input: 指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,具体含义是[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数],注意这是一个4维的Tensor,要求类型为float32和float64其中之一 fil