给 $n \times n(n \le 200000)$ 的方格,第一列、第一行 $f[1, i], f[i, 1] (\le 10 ^ 6)$ 和 $a, b, c(\le 10 ^ 6)$ ,转移方式为 $f[i, j] = a f[i, j-1] + b f[i-1, j] + c$ ,求 $f[n, n] \mod 1000003$ 。
考虑每个位置的贡献。
第一行、第一列的贡献直接 $O(n)$ 算,注意第一步的方向是确定的。
对于其余位置 $(i, j)$ ,贡献为 $\begin{aligned} c a ^ {n - j} b ^ {n - i} \binom{n - i + n - j}{n - i} \end{aligned}$ 。
$\begin{aligned} contr & = \sum_{i = 2} ^ {n} \sum_{j = 2} ^ n a ^ {n - j} b ^ {n - i} \binom{n - i + n - j}{n - i} \\ & = \sum_{i = 0} ^ {n - 2} \sum_{j = 0} ^ {n - 2} \binom{i + j}{i} a ^ i b ^ j \end{aligned}$
直观的想法是直接求 $\left\{ a_x \right\}$ 和 $\left\{ b_x \right\}$ 的二项卷积,系数相加就可以得到贡献。
实现的时候不能直接写 FFT ,因为会爆精度,需要使用「任意模数卷积」的技巧。
实现:
1 #include <bits/stdc++.h> 2 using namespace std; 3 #define F(i, a, b) for (register int i = (a), _b = (b); i <= _b; i++) 4 #define For(i, a, b) for (register int i = (a), _b = (b); i < _b; i++) 5 #define LL long long 6 #define db double 7 inline int rd(void) { 8 int f = 1; char c = getchar(); for (; !isdigit(c); c = getchar()) if (c == ‘-‘) f = -1; 9 int x = 0; for (; isdigit(c); c = getchar()) x = x*10+c-‘0‘; return x*f; 10 } 11 12 const int S = 600000; 13 const int P = 1e6+3; 14 const int p = sqrt(P); 15 const db PI = acos(-1); 16 17 int n, ans; 18 int fac[S], inv[S], ifac[S]; 19 int m, a[S], b[S], I, c[S]; 20 struct comp { 21 db x, y; 22 inline comp(db _x = 0, db _y = 0): x(_x), y(_y) {} 23 friend inline comp operator + (comp a, comp b) { return comp(a.x + b.x, a.y + b.y); } 24 friend inline comp operator - (comp a, comp b) { return comp(a.x - b.x, a.y - b.y); } 25 friend inline comp operator * (comp a, comp b) { return comp(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x); } 26 }x[S], y[S], x2[S], y2[S], r[S]; 27 int bit, len, rev[S]; 28 29 inline int C(int n, int m) { 30 if (m < 0 || n < m) return 0; 31 return 1LL * fac[n] * ifac[m] % P * ifac[n-m] % P; 32 } 33 34 void FFT(comp *a, int sig) { 35 For(i, 0, len) if (i < rev[i]) swap(a[i], a[rev[i]]); 36 for (int i = 2; i <= len; i <<= 1) { 37 comp wn; 38 if (sig == 0) 39 wn = comp(cos(2*PI / +i), sin(2*PI / +i)); 40 else wn = comp(cos(2*PI / -i), sin(2*PI / -i)); 41 for (int j = 0; j < len; j += i) { 42 comp w(1, 0); 43 for (int k = 0; k < i / 2; k++) { 44 comp x = a[j+k], y = w * a[j+k+i/2]; 45 a[j+k] = x+y, a[j+k+i/2] = x-y; 46 w = w * wn; 47 } 48 } 49 } 50 if (sig == 1) { 51 For(i, 0, len) 52 a[i] = comp(a[i].x / len, 0); 53 } 54 } 55 void contri(int t) { 56 For(i, 0, len) { 57 int w = (LL)(r[i].x + 0.5) % P; 58 c[i] = (c[i] + 1LL * w * t) % P; 59 } 60 } 61 62 int main(void) { 63 #ifndef ONLINE_JUDGE 64 freopen("4451.in", "r", stdin); 65 #endif 66 67 fac[0] = 1; 68 For(i, 1, S) fac[i] = 1LL * fac[i-1] * i % P; 69 inv[1] = 1; 70 For(i, 2, S) inv[i] = 1LL * (P - P / i) * inv[P % i] % P; 71 ifac[0] = 1; 72 For(i, 1, S) ifac[i] = 1LL * ifac[i-1] * inv[i] % P; 73 74 n = rd(), m = n-2, a[1] = rd(), b[1] = rd(), I = rd(); 75 a[0] = 1; F(i, 2, n) a[i] = 1LL * a[i-1] * a[1] % P; 76 b[0] = 1; F(i, 2, n) b[i] = 1LL * b[i-1] * b[1] % P; 77 78 F(i, 1, n) { 79 int w = rd(); 80 if (i > 1) ans = (ans + 1LL * w * a[n-1] % P * b[n-i] % P * C(n+n-i-2, n-2)) % P; 81 } 82 F(i, 1, n) { 83 int w = rd(); 84 if (i > 1) ans = (ans + 1LL * w * a[n-i] % P * b[n-1] % P * C(n+n-i-2, n-2)) % P; 85 } 86 87 for (bit = 0, len = 1; len <= m+m; bit++, len <<= 1); 88 For(i, 1, len) rev[i] = rev[i >> 1] >> 1 | (i & 1) << (bit - 1); 89 90 F(i, 0, m) { 91 int w = 1LL * a[i] * ifac[i] % P; 92 x[i] = w / p, y[i] = w % p; 93 } 94 F(i, 0, m) { 95 int w = 1LL * b[i] * ifac[i] % P; 96 x2[i] = w / p, y2[i] = w % p; 97 } 98 FFT(x, 0); 99 FFT(y, 0); 100 FFT(x2, 0); 101 FFT(y2, 0); 102 For(i, 0, len) r[i] = x[i] * x2[i]; 103 FFT(r, 1); 104 contri(1LL * p * p % P); 105 For(i, 0, len) r[i] = x[i] * y2[i]; 106 FFT(r, 1); 107 contri(p); 108 For(i, 0, len) r[i] = y[i] * x2[i]; 109 FFT(r, 1); 110 contri(p); 111 For(i, 0, len) r[i] = y[i] * y2[i]; 112 FFT(r, 1); 113 contri(1); 114 For(i, 0, len) c[i] = 1LL * c[i] * fac[i] % P; 115 116 int sum = 0; 117 For(i, 0, len) sum = (sum + c[i]) % P; 118 ans = (ans + 1LL * I * sum) % P, printf("%d\n", ans); 119 120 return 0; 121 }
利用递归恒等式展开,可以得到线性做法。
设 $m = n - 2$ 。
设 $\begin{aligned} g_i = \sum_{j = 0} ^ m \binom{i + j}{i} b ^ j \end{aligned}$ 。
贡献为 $\begin{aligned} \sum_{i = 0} ^ m a ^ i g_i \end{aligned}$ 。
递推求 $g$ 。
当 $b = 1$ 时,根据上指标求和恒等式,有 $\begin{aligned} g_i = \sum_{j = 0} ^ m \binom{i + j}{i} = \binom{i + m + 1}{i + 1} \end{aligned}$ 。
当 $b \ne 1$ 时,边界为 $\begin{aligned} g_0 = \sum_{j = 0} ^ m b ^ j \end{aligned}$ ,转移为
$\begin{aligned} g_i & = \sum_{j = 0} ^ m \binom{i + j}{i} b ^ j \\ & = \sum_{j = 0} ^ m \binom{i - 1 + j}{i - 1} b ^ j + \sum_{j = 0} ^ {m - 1} \binom{i + j}{i} b ^ {j + 1} \\ & = g_{i - 1} + b(g_i - \binom{i + m}{i}) b ^ m \\ & = g_{i - 1} + bg_i - b ^ {m + 1} \binom{i + m}{i} \end{aligned}$
解得 $\begin{aligned} g_i = \frac{b ^ {m + 1} \binom{i + m}{i} - g_{i - 1}}{b - 1} \end{aligned}$
实现:
1 #include <bits/stdc++.h> 2 using namespace std; 3 #define F(i, a, b) for (register int i = (a), _b = (b); i <= _b; i++) 4 #define For(i, a, b) for (register int i = (a), _b = (b); i <= _b; i++) 5 inline int rd(void) { 6 int f = 1; char c = getchar(); for (; !isdigit(c); c = getchar()) if (c == ‘-‘) f = -1; 7 int x = 0; for (; isdigit(c); c = getchar()) x = x*10+c-‘0‘; return x*f; 8 } 9 10 const int N = 200005; 11 const int P = 1e6+3; 12 13 int fac[P], inv[P], ifac[P]; 14 int n, a[N], b[N], c; 15 int ans; 16 int m, g[N]; 17 18 inline int C(int n, int m) { 19 if (m < 0 || n < m) return 0; 20 return 1LL * fac[n] * ifac[m] % P * ifac[n-m] % P; 21 } 22 23 int main(void) { 24 #ifndef ONLINE_JUDGE 25 freopen("4451.in", "r", stdin); 26 #endif 27 28 fac[0] = 1; 29 For(i, 1, P) fac[i] = 1LL * fac[i-1] * i % P; 30 inv[1] = 1; 31 For(i, 2, P) inv[i] = 1LL * (P - P / i) * inv[P % i] % P; 32 ifac[0] = 1; 33 For(i, 1, P) ifac[i] = 1LL * ifac[i-1] * inv[i] % P; 34 35 n = rd(), a[1] = rd(), b[1] = rd(), c = rd(); 36 a[0] = b[0] = 1; 37 F(i, 2, n) a[i] = 1LL * a[i-1] * a[1] % P; 38 F(i, 2, n) b[i] = 1LL * b[i-1] * b[1] % P; 39 40 F(i, 1, n) { 41 int w = rd(); 42 if (i > 1) ans = (ans + 1LL * w * a[n-1] % P * b[n-i] % P * C(n+n-i-2, n-2)) % P; 43 } 44 F(i, 1, n) { 45 int w = rd(); 46 if (i > 1) ans = (ans + 1LL * w * a[n-i] % P * b[n-1] % P * C(n+n-i-2, n-2)) % P; 47 } 48 49 m = n-2; 50 if (b[1] == 1) { 51 F(i, 0, m) 52 g[i] = C(i+m+1, i+1); 53 } 54 else { 55 F(j, 0, m) g[0] = (g[0] + b[j]) % P; 56 F(i, 1, m) 57 g[i] = (1LL * C(i+m, i) * b[m+1] - g[i-1]) % P * inv[b[1] - 1] % P; 58 } 59 int sum = 0; 60 F(i, 0, m) sum = (sum + 1LL * g[i] * a[i]) % P; 61 ans = (ans + 1LL * c * sum) % P, printf("%d\n", ans); 62 63 return 0; 64 }