cs231n spring 2017 lecture7 听课笔记

1. 优化:

1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题:

  1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很大的loss function,一个方向梯度变化明显,另一个方向梯度变化很缓慢,SGD在优化过程中会震荡着下降,导致优化很慢。深度学习的网络会有上百万甚至更多的参数需要优化,在这个上百万维的空间里,更容易出现各个维度梯度变化差别很大的问题。

  2)陷落在局部最小点或者鞍点(saddle point)。鞍点一个方向梯度下降,另一个方向梯度上升。对于上百万参数的深度学习,鞍点是更不愿意看到的,因为总是有一些参数的梯度是上升,另一些是下降,或者说鞍点是很常见的。而局部最小点还相对可以接受,因为它至少保证了在各个维度上,都没办法在小范围内使得结果更好。

  3)由于计算所有样本的梯度再取平均太费时了,所以一般是计算一个batch的梯度,但这导致了我们得到的梯度只是真正想要的梯度的夹杂了噪音的小样本估计,这使得梯度下降的轨迹扭来扭曲,优化过程变慢。

1.2.SGD的改进:

  SGD+Momentum:SGD是直接用梯度更新参数 xt+1 = x- α▽f(xt),而Momentum的方法是用梯度构造速度 vt+1 = ρvt + ▽f(xt),然后用速度来更新参数 xt+1 = x- αvt+1。ρ可以看成是摩擦力的影响,一般取0.9、0.99等。上一次的速度在摩擦力的影响下衰减了一部分,然后再和当前速度加权求和。这可以解决SGD的三个问题,对于局部最小点和鞍点,即使梯度降为0,依然有上一次的速度可以让优化继续往前迭代。

  Nesterov Momentum:xt+1 = x+ vt+1 + ρ(vt+1 - vt)。直观地解释是,增加了一项调整速度。

  AdaGrad:对优化得到的梯度在不同维度的平方求和,更新的时候除以这一项。直观地解释是梯度大的维度除以大的数,梯度小的维度除以小的数,所以解决了condition number大的问题。在深度学习中用的不多。

  RMSProp:对AdaGrad的改进,在平方求和时增加了decay项。

  Adam:综合了Momentum和AdaGrad/RMSProp两类方法。这是最好的,可以作为深度学习的默认优化方法。

  这几种方法都需要learning rate作为超参数。Learning rate最好是越来越小的,有不同的decay的方式。Learning rate的decay也是超参数,最开始调教神经网络的时候,不用管decay,learning rate测试差不多了,再加入decay。

  

1.3 二阶优化方法:

  之前的优化方法都是一阶的,二阶的方法比如高斯牛顿法,有个很大的好处是不需要设定learning rate(有时候也会设定一个学习率)。对于深度学习的不利因素是,Hessian的逆矩阵求解太费时。改进的方法是Quasi-Newton methods(BGFS最流行)、L-BFGS(Limited memory BFGS),主要改进的点都是求解Hessian的逆。L-BFGS对full batch表现的很不错,对于深度学习的mini-batch表现不太好,如何把L-BFGS用到深度学习是个研究方向。

  

  总结:Adam是很好的默认选择,如果可以full batch则尝试L-BFGS。

2 让模型更好地泛化

2.1. Model ensembles:选择各种不同的模型,各自训练出一个结果,然后取所有模型的平均值。这种方法可以提高2%左右的准确度。

  也有新的paper(Huang et al, "Snapshot ensembles: train 1, get M for free". ICLR 2017)提出只用一个模型,但是记录下优化中途的结果,也能得到很好的结果。

  Polyak averaging。不常用。

2.2. 正则化:相比于Model ensembles,正则化针对单一模型。增加正则化项。

  在测试阶段增加随机成分,而在测试阶段去掉随机成分。

  Dropout:在前向计算时,随机的把一些神经元输出设为0。一般比例是50%。一般这种操作是在全连接层,有时也会用在卷积层。直观的解释是,这相当于用同一个模型的不同子集,所以模拟出了类似好多模型的效果。测试阶段,需要乘以dropout的比例。也有Inverted dropout的改进,把比例项放进训练过程,测试阶段不需要额外的乘法。

  Batch Normalization:选子集操作。

  Data Augmentation:根据已有的数据生成新的数据,比如把图片颠倒、随机的截取缩放图片、调整对比度亮度等。和新想法就是:如何改变数据而不改变数据的标签。

  DropConnect:dropout是扔掉神经元的输出,这里是扔掉权重。

  Fractional Max Pooling:随机选择对图像哪个部分做池化。

  Stachastic Depth:随机的跳过一些层。很疯狂的想法。。。

3. 迁移学习:如果数据集不大(比如少于100万),那么可以找一个有类似数据的很大的数据集,训练一个CNN,然后把结果用在自己的数据集上。现在很多算法都是先用ImageNet训练处的结果然后再做后续的操作。

  

时间: 2024-08-30 10:41:25

cs231n spring 2017 lecture7 听课笔记的相关文章

cs231n spring 2017 lecture9 听课笔记

参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的shape:对于卷积层,输出的边长 =(输入的边长 - filter的边长)/ 步长 + 1,输出的通道数等于filter的数量.每个filter的通道数等于输入的通道数.卷积层的参数 = filter的长 * filter的宽 * 输入的通道数 * filter的数量.池化层没有需要学习的参数. 图中分成两个通

cs231n spring 2017 lecture11 听课笔记

1. Semantic Segmentation 把每个像素分类到某个语义. 为了减少运算量,会先降采样再升采样.降采样一般用池化层,升采样有各种"Unpooling"."Transpose Convolution"(文献中也叫"Upconvolution"之类的其他名字). 这个问题的训练数据的获得非常昂贵,因为需要一个像素一个像素的贴标签. 2. Classification + Localizatoin 一般用同一个网络,一方面得出分类,一

cs231n spring 2017 lecture8 听课笔记

1. CPU vs. GPU: CPU核心少(几个),更擅长串行任务.GPU有很多核心(几千个),每一个核都弱,有自己的内存(几个G),很适合并行任务.GPU最典型的应用是矩阵运算. GPU编程:1)CUDA,只能在英伟达:2)OpenCL类似CUDA,好处是可以跑在任何平台上,但相对慢一些.深度学习可以直接调用现成的库,不用自己写CUDA代码. 用cuDNN比不用快几倍. 深度学习的瓶颈可能不在GPU的运算,而在GPU和数据的通信上,解决办法是:1)把数据读入RAM:2)用SSD而不是HDD:

cs231n spring 2017 lecture12 听课笔记

这一节课很零碎. 1. 神经网络到底在干嘛? 浅层的是具体的特征(比如边.角.色块等),高层的更抽象,最后的全连接层是把图片编码成一维向量然后和每一类标签作比较.如果直接把图片和标签做像素级的最近领域分类,误差很大,但是转成编码之后就准多了. 可以用PCA可视化最后一层的特征,深度学习领域更高阶的做法是用t-SNE(Van der Maaten and Hinton, "Visualizting Data using t-SNE", JMLR 2008). 可视化非线性函数的激活值也可

cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning 听课笔记

1. 深度学习面临的问题: 1)模型越来越大,很难在移动端部署,也很难网络更新. 2)训练时间越来越长,限制了研究人员的产量. 3)耗能太多,硬件成本昂贵. 解决的方法:联合设计算法和硬件. 计算硬件可以分为通用和专用两大类.通用硬件又可以分为CPU和GPU.专用硬件可以分为(FPGA和ASIC,ASIC更高效,谷歌的TPU就是ASIC). 2. Algorithms for Efficient Inference 1)Pruning,修剪掉不那么重要的神经元和连接.第一步,用原始的网络训练:第

cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training 听课笔记

(没太听明白,以后再听) 1. 如何欺骗神经网络? 这部分研究最开始是想探究神经网络到底是如何工作的.结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案.比如下图,左边的熊猫被识别成熊猫,但是加上中间的小"噪音"一样的数值,右图的熊猫就识别不出来了.而且这个小"噪音"不是随机的,它更像是offset,是某种系统误差,叠加到图片上去,总是可以欺骗神经网络. 2. 神经网络从权重到输出的映射是非线性的,非常复杂,非常难优化.训

《Spring实战》读书笔记--使用SpringMVC构建REST API

<Spring实战>读书笔记--使用SpringMVC构建REST API 1. REST介绍 REST(Representational State Transfer):表述性状态转移,是基于HTTP.URI.MIME(HTML.JSON等)协议的Web软件架构.它不同于SOAP Web服务(RPC)关注处理,面向行为,其更关注要处理的数据,面向资源. 1.1 <Spring实战>中是这样描述REST的: 为了理解REST是什么,我们将它的首字母缩写才拆分为不同的构成部分: 表述

老男孩培训视频听课笔记一(在51cto上听的)

学习Linux的系统环境准备     1.系统选择centos 5.8/centos 6.4     2.环境:VMware workstation win7 vim 8.0 虚拟机软件选择与实践安装VMware软件    安装VMware workstation 8.0 win7-VMware上新建虚拟机及涉及技术讲解    创建虚拟机:     名字:mode vim-cs5.8     CPU:1-1 内存 128M--5.8 6.4-256M     硬盘:虚拟的硬盘 6G 获得cent

老男孩培训视频听课笔记二(在51cto上听的)

centos 5.8 文本安装过程    引导采用默认,引导不用设置密码    网络配置,根据实际情况配置,网关是网络出口的地址,一般为wlan出口的路由器的地址或者是代理服务器的内网IP    DNS简单解说图:      主机名--时区--root密码    选择自定义系统安装包--最小化(安全方便工作,建议安装以下的组)      ·base-- 基础      ·editors-编辑器      ·development librarays--开发库      ·development