(简单母函数模板)hdu 1028 Ignatius and the Princess III

Ignatius and the Princess III

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 14405    Accepted Submission(s): 10142

Problem Description

"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:

N=a[1]+a[2]+a[3]+...+a[m];

a[i]>0,1<=m<=N;

My question is how many different equations you can find for a given N.

For example, assume N is 4, we can find:

4 = 4;

4 = 3 + 1;

4 = 2 + 2;

4 = 2 + 1 + 1;

4 = 1 + 1 + 1 + 1;

so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"

Input

The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.

Output

For each test case, you have to output a line contains an integer P which indicate the different equations you have found.

Sample Input

4
10
20

Sample Output

5
42
627

Author

Ignatius.L

考察知识点;母函数模板

//母函数模板--整数拆分--无穷多个硬币的情况
//事实证明:memset函数 不能为数组进行除了0,-1 外的赋值1
#include<stdio.h>
#include<string.h>
int c1[125],c2[125];
int main()
{
	int n;
	int i,j,k;
	while(~scanf("%d",&n))
	{
		for(i=0;i<=n;++i)
		{
			c1[i]=1;
			c2[i]=0;
		}
		for(i=2;i<=n;++i)//i个表达式
		{
			for(j=0;j<=n;++j)//前面i个表达式相乘的结果中的第j项
			{
				for(k=0;k+j<=n;k+=i)//指数
				{
					c2[k+j]+=c1[j];
				}
			}
			for(j=0;j<=n;++j)
			c1[j]=c2[j],c2[j]=0;
		}
		printf("%d\n",c1[n]);
	}
	return 0;
}
时间: 2024-10-03 21:54:32

(简单母函数模板)hdu 1028 Ignatius and the Princess III的相关文章

hdu 1028 Ignatius and the Princess III(母函数,完全背包)

http://acm.hdu.edu.cn/showproblem.php?pid=1028 整数划分问题. 第一道母函数...母函数入门 小于等于n的整数共有n个,1,2......n,每个数都有无限多个,对于整数1,它所对应的母函数为(1+x+x^2+...+x^k+...),整数2对应的母函数为(1+x^2+X^4+...+x^(2*k)+...),整数3对应的母函数为(1+x^3+x^6+...+x^(3*k)+...),以此类推,直到整数n. 那么n的整数划分的个数就是这n个母函数乘积

hdu 1028 Ignatius and the Princess III 简单dp

题目链接:hdu 1028 Ignatius and the Princess III 题意:对于给定的n,问有多少种组成方式 思路:dp[i][j],i表示要求的数,j表示组成i的最大值,最后答案是dp[i][i].那么dp[i][j]=dp[i][j-1]+dp[i-j][i-j],dp[i][j-1]是累加1到j-1的结果,dp[i-j][i-j]表示的就是最大为j,然后i-j有多少种表达方式啦.因为i-j可能大于j,这与我们定义的j为最大值矛盾,所以要去掉大于j的那些值 /*******

hdu 1028 Ignatius and the Princess III(整数划分)

Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 12731    Accepted Submission(s): 8999 Problem Description "Well, it seems the first problem is too easy. I will let

HDU 1028 Ignatius and the Princess III(母函数)

Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 15794    Accepted Submission(s): 11138 Description "Well, it seems the first problem is too easy. I will let you kno

hdu 1028 Ignatius and the Princess III 【整数划分】

Ignatius and the Princess III                                                                                       Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 15730    Accepted Submission(

HDU 1028 Ignatius and the Princess III dp

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1028 一道经典题,也是算法设计与分析上的一道题,可以用递推,动态规划,母函数求解,我用的是动态规划,也就是递推的变形. dp[i][j]表示数i的划分中最大数不超过j的划分的个数 状态转移方程: if(j > i) dp[i][j] = dp[i][i]; if(j == i) dp[i][j] = dp[i][j - 1] + 1; if(j < i) dp[i][j] = dp[i][j -

HDU 1028.Ignatius and the Princess III【分析】【8月20】

Ignatius and the Princess III Problem Description "Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says. "The second problem is, given an positive integer N, we define an equation like

HDU 1028 Ignatius and the Princess III (动态规划)

题目链接:HDU 1028 Problem Description "Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says. "The second problem is, given an positive integer N, we define an equation like this: N=a[1]+a[2

HDU 1028 Ignatius and the Princess III伊格和公主III(AC代码)母函数

本题听说可用递推.DP等方法来做,但是此题是母函数的入门经典喔~所以我用了母函数 1 #include <iostream> 2 #define N 120 3 using namespace std; 4 int ans[N+1],sup[N+1];//ans保存答案,sup保存临时值 5 void main() 6 { 7 int num=0,i,j,k; 8 for(i=0;i<N+1;i++) //全部初始化为1 9 ans[i]=1; 10 for(i=2;i<=N;i+