Generalised Policy Iteration With Monte-Carlo Evaluation

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/control.pdf

时间: 2024-11-15 00:37:28

Generalised Policy Iteration With Monte-Carlo Evaluation的相关文章

Introduction to Monte Carlo Tree Search (蒙特卡罗搜索树简介)

 部分翻译自“Monte Carlo Tree Search and Its Applications”. MCTS 结合了传统 MC 随机采样的方法 和 树搜索的方法.MC 方法利用重复的随机采样来得到结果.在 MCTS 中,随机采样的过程是在随机模拟的形式中,用来拓展游戏树.该游戏树紧接着别用来决定下一个 move.MCTS 随着游戏树迭代的生长.每一次迭代,game tree 就 traversed 和 expanded.一段时间之后,game tree 就会收敛.这意味着在每次迭代中都

人工智能之计算最佳策略(Policy Iteration and Value Iteration)

1. 实验要求 题目:计算最佳策略 在下面例子基础上,自行设计一个问题(例如:求解某两点之间的最短路径, 或是在图中加一些障碍物,计算最短路径), 给出该问题对应的 MDP 模型描述, 然后分别使用 value iteration 和 policy iteration 算法计算出最佳策略. 2.实验思路 (1)设计问题(MDP描述) 设计4*4的方格,即初始化的矩阵,每个空格都是一个状态,存在收益情况,在每到达一个点时便可选择上下左右四个方向移动,遇到边缘时状态不变,当移动一步则收益-1 (2)

Experiment 22 - Monte Carlo Simulation

Experiment 22 - Monte Carlo SimulationDepartment of Electrical Engineering & ElectronicsSeptember 2019, Ver. 3.4Experiment specificationsModule(s) ELEC224 / ELEC273Experiment code 22Semester 1Level 2Lab location PC labs, third floor/fourth floor, che

Monte carlo

转载 http://blog.sciencenet.cn/blog-324394-292355.html 蒙特卡罗(Monte Carlo)方法,也称为计算机随机模拟方法,是一种基于"随机数"的计算方法. 1.起源 这一方法源于美国在第二次世界大战进研制原子弹的"曼哈顿计划".Monte Carlo方法创始人主要是这四位:Stanislaw Marcin Ulam, Enrico Fermi, John von Neumann(学计算机的肯定都认识这个牛人吧)和 N

History of Monte Carlo Methods - Part 1

History of Monte Carlo Methods - Part 1 Some time ago in June 2013 I gave a lab tutorial on Monte Carlo methods at Microsoft Research. These tutorials are seminar-talk length (45 minutes) but are supposed to be light, accessible to a general computer

MCMC(Markov Chain Monte Carlo) and Gibbs Sampling

MCMC(Markov Chain Monte Carlo) and Gibbs Sampling 1.   随机模拟 随机模拟(或者统计模拟)方法有一个很酷的别名是蒙特卡罗方法(Monte Carlo Simulation).这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆.冯.诺依曼.费米.费曼.Nicholas Metropolis, 在美国洛斯阿拉莫斯国家实验室研究裂变物质的中子连锁反应的时候,开始使用统计模拟的方法,并在最早的计算机上进行

(转)Monte Carlo method 蒙特卡洛方法

转载自:维基百科  蒙特卡洛方法 https://zh.wikipedia.org/wiki/%E8%92%99%E5%9C%B0%E5%8D%A1%E7%BE%85%E6%96%B9%E6%B3%95 蒙特卡洛方法[编辑] 维基百科,自由的百科全书 蒙特卡洛方法(英语:Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法.是指使用随机数(或更常见的伪随机数)来解决很多

用python实现Monte Carlo Tic-Tac-Toe(井字游戏)

1 """ 2 Monte Carlo Tic-Tac-Toe Player @author dark_guard 3 """ 4 5 import random 6 import poc_ttt_gui 7 import poc_ttt_provided as provided 8 9 # Constants for Monte Carlo simulator 10 # Change as desired 11 NTRIALS = 20 # N

[matlab]Monte Carlo模拟学习笔记

理论基础:大数定理,当频数足够多时,概率可以逼近频率,从而依靠频率与$\pi$的关系,求出$\pi$ 所以,rand在Monte Carlo中是必不可少的,必须保证测试数据的随机性. 用蒙特卡洛方法进行计算机模拟的步骤:[1] 设计一个逻辑框图,即模拟模型.[2] 根据流程图编写程序,模拟随机现象.可通过具有各种概率分布的模拟随机数来模拟随机现象.[3] 分析模拟结果,计算所需要结果. ex1.投针试验求$\pi$ %蒲丰投针实验的计算机模拟 format long; %设置15位显示精度 a=