洛谷mNOIP模拟赛Day2-将军令

题目背景

pdf题面和大样例链接:http://pan.baidu.com/s/1cawM7c 密码:xgxv

 历史/落在/赢家/之手
 至少/我们/拥有/传说
 谁说/败者/无法/不朽
 拳头/只能/让人/低头
 念头/却能/让人/抬头
 抬头/去看/去爱/去追
 你心中的梦   

题目描述

又想起了四月。

如果不是省选,大家大概不会这么轻易地分道扬镳吧? 只见一个又一个昔日的队友离开了机房。

凭君莫话封侯事,一将功成万骨枯。

梦里,小 F 成了一个给将军送密信的信使。

现在,有两封关乎国家生死的密信需要送到前线大将军帐下,路途凶险,时间紧迫。小 F 不因为自己的祸福而避趋之,勇敢地承担了这个任务。

不过,小 F 实在是太粗心了,他一不小心把两封密信中的一封给弄掉了。

小 F 偷偷打开了剩下的那封密信。他 发现一副十分详细的地图,以及几句批文——原来 这是战场周围的情报地图。他仔细看后发现,在这张地图上标记了 n 个从 1 到 n 标号的 驿站,n ? 1 条长度为 1 里的小道,每条小道双向连接两个不同的驿站,并且驿站之间可以 通过小道两两可达。

小 F 仔细辨认着上面的批注,突然明白了丢失的信的内容了。原来,每个驿站都可以驻 扎一个小队,每个小队可以控制距离不超过 k 里的驿站。如果有驿站没被控制,就容易产 生危险——因此这种情况应该完全避免。而那封丢失的密信里,就装着朝廷数学重臣留下的 精妙的排布方案,也就是用了最少的小队来控制所有驿站。

小 F 知道,如果能计算出最优方案的话,也许他就能够将功赎过,免于死罪。他找到了 你,你能帮帮他吗? 当然,小 F 在等待你的支援的过程中,也许已经从图上观察出了一些可能会比较有用的 性质,他会通过一种特殊的方式告诉你。

输入输出格式

输入格式:

从标准输入中读入数据。

输入第 1 行一个正整数 n,k,t,代表驿站数,一支小队能够控制的最远距离,以及特 殊性质所代表的编号。关于特殊性质请参照数据范围。

输入第 2 行至第 n 行,每行两个正整数 u_iui?,v_ivi?,表示在 u_iui? 和 v_ivi? 间,有一条长度为 一里的小道。

输出格式:

输出到标准输出中。

输出一行,为最优方案下需要的小队数。

输入输出样例

输入样例#1: 复制

4 1 0
1 2
1 3
1 4

输出样例#1: 复制

1
 

输入样例#2: 复制

6 1 0
1 2
1 3
1 4
4 5
4 6

输出样例#2: 复制

2

说明

【样例 1 说明】

如图。由于一号节点到周围的点距离均是 1,因此可以控制所有驿站。

【样例 2 说明】

如图,和样例 1 类似。

子任务会给出部分测试数据的特点。如果你在解决题目中遇到了困难,可以尝试只解 决一部分测试数据。

关于 t 的含义如下: t = 0:该测试点没有额外的特殊性质; t = 1:保证最多 8 个点的所连接的小道超过 1 条; t = 2:保证所有点到 1 号点的距离不超过 2。

每个测试点的数据规模及特点如下表


贪心,对于深度最深的未处理节点来说,反正它都最深了,那么尽量选浅一点的吧

注意树上问题不仅有父亲,儿子,还有兄弟啊啊啊~!!!

 1 #include<cstdio>
 2 #include<cstdlib>
 3 #include<algorithm>
 4 #include<cstring>
 5 #include<cmath>
 6 #include<map>
 7 #include<set>
 8 #include<queue>
 9 #include<vector>
10 #define INF 0x7f7f7f7f
11 #define pii pair<int,int>
12 #define ll long long
13 #define MAXN 100005
14 using namespace std;
15 int read(){
16     int x=0,f=1;char ch=getchar();
17     while(ch<‘0‘||ch>‘9‘){if(‘-‘==ch)f=-1;ch=getchar();}
18     while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();}
19     return x*f;
20 }
21 int n,k;
22 int first[MAXN],nxt[MAXN<<1],to[MAXN<<1],cnt;
23 //double edge
24 int dep[MAXN],fa[MAXN];
25 pii tmp[MAXN];
26 int b[MAXN];
27
28 void add(int x,int y){
29     nxt[++cnt]=first[x];first[x]=cnt;to[cnt]=y;
30     nxt[++cnt]=first[y];first[y]=cnt;to[cnt]=x;
31 }
32 void dfs(int x){
33     for(int e=first[x];e;e=nxt[e]){
34         int y=to[e];
35         if(y==fa[x]){
36             continue;
37         }
38         fa[y]=x;
39         dep[y]=dep[x]+1;
40         dfs(y);
41     }
42 }
43 void solve(int x,int fa,int d){
44     if(!d){
45         return ;
46     }
47     for(int e=first[x];e;e=nxt[e]){
48         int y=to[e];
49         if(y==fa){
50             continue;
51         }
52         b[y]=1;
53         solve(y,x,d-1);
54     }
55 }
56 bool comp(const pii &p1,const pii &p2){
57     return (p1.first>p2.first);
58 }
59 int main()
60 {
61 //    freopen("general2.in","r",stdin);
62     n=read();k=read();
63     int t=read();
64     for(int i=1;i<n;i++){
65         int x=read(),y=read();
66         add(x,y);
67     }
68     dep[1]=1;dfs(1);
69     for(int i=1;i<=n;i++){
70         tmp[i]=make_pair(dep[i],i);
71     }
72     sort(tmp+1,tmp+n+1,comp);
73     int ans=0;
74     for(int i=1;i<=n;i++){
75         int t=tmp[i].second;
76         if(!b[t]){
77             int x=t;
78             for(int j=1;j<=k&&fa[x];j++){
79                 x=fa[x];
80             }
81             b[x]=1;
82             solve(x,-1,k);
83             ans++;
84         }
85     }
86     printf("%d\n",ans);
87     return 0;
88 }
时间: 2024-09-29 02:15:41

洛谷mNOIP模拟赛Day2-将军令的相关文章

洛谷mNOIP模拟赛Day1-斐波那契

题目背景 大样例下发链接:http://pan.baidu.com/s/1c0LbQ2 密码:jigg 题目描述 小 C 养了一些很可爱的兔子. 有一天,小 C 突然发现兔子们都是严格按照伟大的数学家斐波那契提出的模型来进行 繁衍:一对兔子从出生后第二个月起,每个月刚开始的时候都会产下一对小兔子.我们假定, 在整个过程中兔子不会出现任何意外. 小 C 把兔子按出生顺序,把兔子们从 1 开始标号,并且小 C 的兔子都是 1 号兔子和 1 号兔子的后代.如果某两对兔子是同时出生的,那么小 C 会将父

【洛谷mNOIP模拟赛Day1】T1 斐波那契

题目传送门:https://www.luogu.org/problemnew/show/P3938 这题出得特别吼啊~~ 通过打表或者大胆猜想斐波那契数列的一些性质,我们不难发现对于一只兔子$x$,其父亲必为$x-Fk$($F$为斐波那契数列,且$F_{k}$为不大于$x$的最大数字),举个例子:$7-5=2$,$11-8=3$,对于点$x$和点$y$,我们分别求出其所有直系祖宗,然后扫一遍即可. 由于斐波那契数列为指数级增长,故向上跳的复杂度为一个$log$级别,时间复杂度为$O(m*log(

洛谷mNOIP模拟赛Day1-分组

传送门 首先是贪心的思路 从后向前选,能多选就多选, 理由:数字越少肯定越优,同时间隔尽量向前推,字典序尽量小 对于K==1,枚举1~512直接判断 对于K==2,需要用镜像并查集,来刻画"敌对关系",如果a和b产生矛盾,就把a和b的镜像(b')连接 ,b和a'连接,然后判断自己是不是和自己的镜像连接了 打上时间戳避免清零卡常 1 #include<cstdio> 2 #include<cstdlib> 3 #include<algorithm> 4

洛谷mNOIP模拟赛Day1-数颜色

传送门 题目大意: 给定一个序列,维护每个数字在[L,R]出现的次数以及交换a[x]和a[x+1]的操作 一开始想的分桶法,感觉复杂度还可以吧,常数有点大,于是死得很惨(65分) 1 #include<cstdio> 2 #include<cstdlib> 3 #include<algorithm> 4 #include<cstring> 5 #include<cmath> 6 #include<map> 7 #include<

洛谷mNOIP模拟赛Day2-入阵曲

题目背景 pdf题面和大样例链接:http://pan.baidu.com/s/1cawM7c 密码:xgxv 丹青千秋酿,一醉解愁肠. 无悔少年枉,只愿壮志狂. 题目描述 小 F 很喜欢数学,但是到了高中以后数学总是考不好. 有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识算法竞赛的 时候,觉得整个世界都焕然一新.这世界上怎么会有这么多奇妙的东西?曾经自己觉得难以 解决的问题,被一个又一个算法轻松解决. 小 F 当时暗自觉得,与自己的幼稚相比起来,还有好多要学习的呢. 一年过

CH Round #55 - Streaming #6 (NOIP模拟赛day2)解题报告

T1九九归一 描述 萌蛋在练习模n意义下的乘法时发现,总有一些数,在自乘若干次以后,会变成1.例如n=7,那么5×5 mod 7=4,4×5 mod 7=6,6×5 mod 7=2,2×5 mod 7=3,3×5 mod 7=1.如果继续乘下去,就会陷入循环当中.萌蛋还发现,这个循环的长度经常会是φ(n),即小于n且与n互质的正整数的个数.例如,φ(7)=6,而上述循环的长度也是6,因为5,4,6,2,3,1共有6个数.再如n=6,那么5×5 mod 6=1.这个循环的长度很短,只有2,而恰好φ

【洛谷P2104&#183;模拟】二进制

题面 题目描述 小Z最近学会了二进制数,他觉得太小的二进制数太没意思,于是他想对一个巨大二进制数做以下 4 种基础运算: 运算 1:将整个二进制数加 1 运算 2:将整个二进制数减 1 运算 3:将整个二进制数乘 2 运算 4:将整个二进制数整除 2 小Z很想知道运算后的结果,他只好向你求助. (Ps:为了简化问题,数据保证+,-操作不会导致最高位的进位与退位) 输入输出格式 输入格式: 第一行两个正整数 n,m,表示原二进制数的长度以及运算数. 接下来一行 n 个字符,分别为'0'或'1'表示

2016.10.30 NOIP模拟赛 day2 PM 整理

满分:300分 直接全部爆零,真的是很坑啊! 10.30的题目+数据:链接:http://pan.baidu.com/s/1jHXLace 密码:i784 T1: 题目中的难点就是每次折叠的点可能应经被覆盖了,我的做法是递归去推出它现在在哪个位置,不仅超时,而且答案错误. 也曾想过用数组去存下它当前的位置,但是被10^18的数据吓到了. 正解:并不是所有的坐标都有用,仅仅是那m个将要用到的点有用,所以每次折叠,就只对之后的有用的k个点进行更新,这样就行了. 时间复杂度O(m^2) 不会超时的.

LYDSY模拟赛day2 Dash Speed

/* 弃坑 */ #include<cstdio> #include<algorithm> using namespace std; const int N=70010,M=N*20; int n,m,i,g[N],v[N<<1],nxt[N<<1],ed,cur,ans[N]; int size[N],f[N],d[N],son[N],top[N]; int fa[N],dep[N],A[N],B[N]; int G[262150],V[M],W[M],N