8种常见机器学习算法比较

机器学习算法太多了,分类、回归、聚类、推荐、图像识别领域等等,要想找到一个合适算法真的不容易,所以在实际应用中,我们一般都是采用启发式学习方式来实验。通常最开始我们都会选择大家普遍认同的算法,诸如SVM,GBDT,Adaboost,现在深度学习很火热,神经网络也是一个不错的选择。假如你在乎精度(accuracy)的话,最好的方法就是通过交叉验证(cross-validation)对各个算法一个个地进行测试,进行比较,然后调整参数确保每个算法达到最优解,最后选择最好的一个。但是如果你只是在寻找一个“足够好”的算法来解决你的问题,或者这里有些技巧可以参考,下面来分析下各个算法的优缺点,基于算法的优缺点,更易于我们去选择它。

偏差&方差

偏差:描述的是预测值(估计值)的期望E’与真实值Y之间的差距。偏差越大,越偏离真实数据。

当然,你也可以认为这是生成模型(NB)与判别模型(KNN)的一个区别。

以下内容引自知乎:

由于训练样本很少(至少不足够多),所以通过训练集得到的模型,总不是真正正确的。(就算在训练集上正确率100%,也不能说明它刻画了真实的数据分布,要知道刻画真实的数据分布才是我们的目的,而不是只刻画训练集的有限的数据点)。而且,实际中,训练样本往往还有一定的噪音误差,所以如果太追求在训练集上的完美而采用一个很复杂的模型,会使得模型把训练集里面的误差都当成了真实的数据分布特征,从而得到错误的数据分布估计。这样的话,到了真正的测试集上就错的一塌糊涂了(这种现象叫过拟合)。但是也不能用太简单的模型,否则在数据分布比较复杂的时候,模型就不足以刻画数据分布了(体现为连在训练集上的错误率都很高,这种现象较欠拟合)。过拟合表明采用的模型比真实的数据分布更复杂,而欠拟合表示采用的模型比真实的数据分布要简单。

所以,这样就容易分析朴素贝叶斯了。它简单的假设了各个数据之间是无关的,是一个被严重简化了的模型。所以,对于这样一个简单模型,大部分场合都会Bias部分大于Variance部分,也就是说高偏差而低方差。

偏差和方差与模型复杂度的关系使用下图更加明了:

常见算法优缺点

朴素贝叶斯属于生成式模型(关于生成模型和判别式模型,主要还是在于是否是要求联合分布),非常简单,你只是做了一堆计数。如果注有条件独立性假设(一个比较严格的条件),朴素贝叶斯分类器的收敛速度将快于判别模型,如逻辑回归,所以你只需要较少的训练数据即可。即使NB条件独立假设不成立,NB分类器在实践中仍然表现的很出色。它的主要缺点是它不能学习特征间的相互作用,用mRMR中R来讲,就是特征冗余。引用一个比较经典的例子,比如,虽然你喜欢Brad Pitt和Tom Cruise的电影,但是它不能学习出你不喜欢他们在一起演的电影。

  • 朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。
  • 对小规模的数据表现很好,能个处理多分类任务,适合增量式训练;
  • 对缺失数据不太敏感,算法也比较简单,常用于文本分类。
  • 需要计算先验概率;
  • 分类决策存在错误率;
  • 对输入数据的表达形式很敏感。

属于判别式模型,有很多正则化模型的方法(L0, L1,L2,etc),而且你不必像在用朴素贝叶斯那样担心你的特征是否相关。与决策树与SVM机相比,你还会得到一个不错的概率解释,你甚至可以轻松地利用新数据来更新模型(使用在线梯度下降算法,online gradient descent)。如果你需要一个概率架构(比如,简单地调节分类阈值,指明不确定性,或者是要获得置信区间),或者你希望以后将更多的训练数据快速整合到模型中去,那么使用它吧。

  • 实现简单,广泛的应用于工业问题上;
  • 分类时计算量非常小,速度很快,存储资源低;
  • 便利的观测样本概率分数;
  • 对逻辑回归而言,多重共线性并不是问题,它可以结合L2正则化来解决该问题;
  • 当特征空间很大时,逻辑回归的性能不是很好;
  • 容易欠拟合,一般准确度不太高
  • 不能很好地处理大量多类特征或变量;

对于非线性特征,需要进行转换;

线性回归是用于回归的,而不像Logistic回归是用于分类,其基本思想是用梯度下降法对最小二乘法形式的误差函数进行优化,当然也可以用normal equation直接求得参数的解,结果为:

优点: 实现简单,计算简单;

缺点: 不能拟合非线性数据.

KNN即最近邻算法,其主要过程为:

如何选择一个最佳的K值,这取决于数据。一般情况下,在分类时较大的K值能够减小噪声的影响。但会使类别之间的界限变得模糊。一个较好的K值可通过各种启发式技术来获取,比如,交叉验证。另外噪声和非相关性特征向量的存在会使K近邻算法的准确性减小。

KNN算法的优点

理论成熟,思想简单,既可以用来做分类也可以用来做回归;

可用于非线性分类;

训练时间复杂度为O(n);

  • 对数据没有假设,准确度高,对outlier不敏感;
    • 计算量大;

样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少);

需要大量的内存;

易于解释。它可以毫无压力地处理特征间的交互关系并且是非参数化的,因此你不必担心异常值或者数据是否线性可分(举个例子,决策树能轻松处理好类别A在某个特征维度x的末端,类别B在中间,然后类别A又出现在特征维度x前端的情况)。它的缺点之一就是不支持在线学习,于是在新样本到来后,决策树需要全部重建。另一个缺点就是容易出现过拟合,但这也就是诸如随机森林RF(或提升树boosted

tree)之类的集成方法的切入点。另外,随机森林经常是很多分类问题的赢家(通常比支持向量机好上那么一丁点),它训练快速并且可调,同时你无须担心要像支持向量机那样调一大堆参数,所以在以前都一直很受欢迎。

信息熵的计算公式如下:

现在选中一个属性xixi用来进行分枝,此时分枝规则是:如果xi=vxi=v的话,将样本分到树的一个分支;如果不相等则进入另一个分支。很显然,分支中的样本很有可能包括2个类别,分别计算这2个分支的熵H1和H2,计算出分枝后的总信息熵H’
=p1H1+p2 H2,则此时的信息增益ΔH = H -
H’。以信息增益为原则,把所有的属性都测试一边,选择一个使增益最大的属性作为本次分枝属性。

  • 计算简单,易于理解,可解释性强;
  • 比较适合处理有缺失属性的样本;
  • 能够处理不相关的特征;
  • 在相对短的时间内能够对大型数据源做出可行且效果良好的结果。
  • 容易发生过拟合(随机森林可以很大程度上减少过拟合);
  • 忽略了数据之间的相关性;
  • 对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征(只要是使用了信息增益,都有这个缺点,如RF)。

Adaboost是一种加和模型,每个模型都是基于上一次模型的错误率来建立的,过分关注分错的样本,而对正确分类的样本减少关注度,逐次迭代之后,可以得到一个相对较好的模型。是一种典型的boosting算法。下面是总结下它的优缺点。

  • adaboost是一种有很高精度的分类器。
  • 可以使用各种方法构建子分类器,Adaboost算法提供的是框架。
  • 当使用简单分类器时,计算出的结果是可以理解的,并且弱分类器的构造极其简单。
  • 简单,不用做特征筛选。
  • 不容易发生overfitting。
  • 关于随机森林和GBDT等组合算法,参考这篇文章:机器学习-组合算法总结

6.SVM支持向量机

优点

可以解决高维问题,即大型特征空间;

  • 能够处理非线性特征的相互作用;
  • 无需依赖整个数据;
  • 可以提高泛化能力;
  • 当观测样本很多时,效率并不是很高;
  • 对非线性问题没有通用解决方案,有时候很难找到一个合适的核函数;
  • 对缺失数据敏感;
  • 第一,如果样本数量小于特征数,那么就没必要选择非线性核,简单的使用线性核就可以了;
  • 第二,如果样本数量大于特征数目,这时可以使用非线性核,将样本映射到更高维度,一般可以得到更好的结果;
  • 第三,如果样本数目和特征数目相等,该情况可以使用非线性核,原理和第二种一样。

7. 人工神经网络的优缺点

  • 分类的准确度高;
  • 并行分布处理能力强,分布存储及学习能力强,
  • 对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系;
  • 具备联想记忆的功能。
  • 神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;
  • 不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;
  • 学习时间过长,甚至可能达不到学习的目的。

之前写过一篇关于K-Means聚类的文章,博文链接:机器学习算法-K-means聚类。关于K-Means的推导,里面有着很强大的EM思想。

  • 算法简单,容易实现 ;
  • 对处理大数据集,该算法是相对可伸缩的和高效率的,因为它的复杂度大约是O(nkt),其中n是所有对象的数目,k是簇的数目,t是迭代的次数。通常k<<n。这个算法通常局部收敛。
  • 算法尝试找出使平方误差函数值最小的k个划分。当簇是密集的、球状或团状的,且簇与簇之间区别明显时,聚类效果较好。
  • 对数据类型要求较高,适合数值型数据;
  • 可能收敛到局部最小值,在大规模数据上收敛较慢
  • K值比较难以选取;
  • 对初值的簇心值敏感,对于不同的初始值,可能会导致不同的聚类结果;
  • 不适合于发现非凸面形状的簇,或者大小差别很大的簇。
  • 对于”噪声”和孤立点数据敏感,少量的该类数据能够对平均值产生极大影响。

之前翻译过一些国外的文章,有一篇文章中给出了一个简单的算法选择技巧:

2. 然后试试决策树(随机森林)看看是否可以大幅度提升你的模型性能。即便最后你并没有把它当做为最终模型,你也可以使用随机森林来移除噪声变量,做特征选择;

通常情况下:【GBDT>=SVM>=RF>=Adaboost>=Other…】,现在深度学习很热门,很多领域都用到,它是以神经网络为基础的,目前我自己也在学习,只是理论知识不是很厚实,理解的不够深,这里就不做介绍了。

算法固然重要,但好的数据却要优于好的算法,设计优良特征是大有裨益的。假如你有一个超大数据集,那么无论你使用哪种算法可能对分类性能都没太大影响(此时就可以根据速度和易用性来进行抉择)。

时间: 2024-08-26 03:25:58

8种常见机器学习算法比较的相关文章

(转)8种常见机器学习算法比较

机器学习算法太多了,分类.回归.聚类.推荐.图像识别领域等等,要想找到一个合适算法真的不容易,所以在实际应用中,我们一般都是采用启发式学习方式来实验.通常最开始我们都会选择大家普遍认同的算法,诸如SVM,GBDT,Adaboost,现在深度学习很火热,神经网络也是一个不错的选择.假如你在乎精度(accuracy)的话,最好的方法就是通过交叉验证(cross-validation)对各个算法一个个地进行测试,进行比较,然后调整参数确保每个算法达到最优解,最后选择最好的一个.但是如果你只是在寻找一个

机器学习几种常见优化算法介绍

机器学习几种常见优化算法介绍 https://blog.csdn.net/class_brick/article/details/78949145 1. 梯度下降法(Gradient Descent) 2. 牛顿法和拟牛顿法(Newton's method & Quasi-Newton Methods) 3. 共轭梯度法(Conjugate Gradient) 4. 启发式优化方法 5. 解决约束优化问题--拉格朗日乘数法 我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企

几种常见排序算法

几种常见排序算法 几种常见排序算法 写在前面 基础介绍 初级排序算法 selection sort选择排序 insertion sort插入排序 ShellSort希尔排序 shuffing不是排序算法 merge sort归并排序 Abstract in-place merge原地归并的抽象方法 Top-down mergesort自顶向下的归并排序 Bottom-up mergesort自底向上的归并排序 quicksort 三向切分的快速排序 Heapsort堆排序 总结和比较 命题 本文

JavaScript版几种常见排序算法

今天发现一篇文章讲“JavaScript版几种常见排序算法”,看着不错,推荐一下原文:http://www.w3cfuns.com/blog-5456021-5404137.html 算法描述: * 冒泡排序:最简单,也最慢,貌似长度小于7最优* 插入排序: 比冒泡快,比快速排序和希尔排序慢,较小数据有优势* 快速排序:这是一个非常快的排序方式,V8的sort方法就使用快速排序和插入排序的结合* 希尔排序:在非chrome下数组长度小于1000,希尔排序比快速更快* 系统方法:在forfox下系

如何用Python实现常见机器学习算法-1

最近在GitHub上学习了有关python实现常见机器学习算法 目录 一.线性回归 1.代价函数 2.梯度下降算法 3.均值归一化 4.最终运行结果 5.使用scikit-learn库中的线性模型实现 二.逻辑回归 1.代价函数 2.梯度 3.正则化 4.S型函数 5.映射为多项式 6.使用的优化方法 7.运行结果 8.使用scikit-learn库中的逻辑回归模型实现 逻辑回归_手写数字识别_OneVsAll 1.随机显示100个数字 2.OneVsAll 3.手写数字识别 4.预测 5.运行

几种常见模式识别算法整理和总结

这学期选了门模式识别的课.发现最常见的一种情况就是,书上写的老师ppt上写的都看不懂,然后绕了一大圈去自己查资料理解,回头看看发现,Ah-ha,原来本质的原理那么简单,自己一開始仅仅只是被那些看似formidable的细节吓到了.所以在这里把自己所学的一些点记录下来,供备忘,也供參考. 1. K-Nearest Neighbor K-NN能够说是一种最直接的用来分类未知数据的方法.基本通过以下这张图跟文字说明就能够明确K-NN是干什么的 简单来说,K-NN能够看成:有那么一堆你已经知道分类的数据

常见机器学习算法原理+实践系列5(KNN分类+Keans聚类)

一,KNN分类 K-Nearest Neighbor K临近算法是一种有监督的分类算法,工作原理很简单,存在一个样本集合,也成为训练样本,样本中包含标签,将新数据的每个特征与样本集合的数据对应特征进行比较,然后提取样本最相似的分类标签,k就是选择的最相似的数据点,选择k个点中出现频率最高的分类,就是新数据的分类.一般来说k不会超过20个.Knn有两个细节需要注意,一个是相似度算法,常用包含欧式距离,余弦距离等等,另外一个在计算相似度之前需要归一化特征,比如使用离差标准化(Min-Max),把所有

几种常见排序算法的总结

下面总结几种常见的排序算法,包括插入排序.选择排序.快速排序.归并排序和堆排序. 时间复杂度: 插入排序 选择排序 快速排序 归并排序 堆排序 Ο(n2) Ο(n2) Ο(nlog(n)) Ο(nlog(n)) Ο(nlog(n)) 算法概述: 插入排序:每次从未排好序的数据堆中拿出一个数,插入到已排好序的数据队列的正确位置. 选择排序:每次从未排好序的数据堆中找到最小的数,插入到已排好序的数据队列的头部. 快速排序:以数据堆中的一个数为标准,将数据堆分为小于等于和大于该数的两堆,对于分割后的两

10种传统机器学习算法

1基于CF的推荐算法 1.1算法简介 CF(协同过滤)简单来形容就是利用兴趣相投的原理进行推荐,协同过滤主要分两类,一类是基于物品的协同过滤算法,另一种是基于用户的协同过滤算法,这里主要介绍基于物品的协同过滤算法. 给定一批用户,及一批物品,记Vi表示不同用户对物品的评分向量,那么物品i与物品j的相关性为: 上述公式是利用余弦公式计算相关系数,相关系数的计算还有:杰卡德相关系数.皮尔逊相关系数等. 计算用户u对某一物品的偏好,记用户u对物品i的评分为score(u,i),用户u对物品i的协同过滤