分治2--取余运算

分治2--取余运算

一、心得

二、题目和分析

题目描述

输入b,p,k的值,求bp mod k的值。其中b,p,k*k为长整型数。

输入

三个整数,分别为b,p,k的值

输出

bp mod k

样例输入

2 10 9

样例输出

2^10 mod 9=7

提示

解题思路:分治,顾名思义,把一个大问题分解为多个小问题。

   这里有一个公式,利用这个公式通过递归求得。

三、代码和结果

 1 /*
 2 递推方程
 3 边界
 4 p==0 1
 5 p/2==0 f(p)=f(p/2)*f(p/2)
 6 p/2==1 f(p)=f(p/2)*f(p/2)*f(1)
 7 */
 8 #include <iostream>
 9 #define ll long long
10 using namespace std;
11
12 ll f(ll b,ll p,ll k){
13     if(p==0) return 1;
14     else {
15         ll tmp=f(b,p/2,k);
16         ll ans=((tmp%k)*(tmp%k))%k;
17         if(p/2==1) ans=(ans*(b%k))%k;
18         return ans;
19     }
20 }
21
22 int main(){
23     ll b,p,k;
24     cin>>b>>p>>k;
25     cout<<f(b,p,k)<<endl;
26     return 0;
27 } 

时间: 2024-10-23 20:36:56

分治2--取余运算的相关文章

【分治】取余运算

问题 E: [分治]取余运算 时间限制: 1 Sec  内存限制: 128 MB提交: 16  解决: 6[提交][状态][讨论版] 题目描述 输入b,p,k的值,求bp mod k的值.其中b,p,k*k为长整型数. 输入 三个整数,分别为b,p,k的值 输出 bp mod k 样例输入 2 10 9 样例输出 2^10 mod 9=7 提示 解题思路:分治,顾名思义,把一个大问题分解为多个小问题. 这里有一个公式,利用这个公式通过递归求得. 代码: #include <iostream>

Luogu P1226 取余运算||快速幂(数论,分治)

P1226 取余运算||快速幂 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出"b^p mod k=s" s为运算结果 输入输出样例 输入样例#1: 2 10 9 输出样例#1: 2^10 mod 9=7 这是一道很有趣的水题,如果知道公式. 一般求解会溢出,导致答案错误. 这里介绍取模的一个公式: a*b%k=(a%k)*(b%k)%k. 在我们这道题中是b^p = (b^(p/

1497 取余运算

1497 取余运算 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 输入b,p,k的值,编程计算bp mod k的值.其中的b,p,k*k为长整型数(2^31范围内). 输入描述 Input Description b p k 输出描述 Output Description 输出b^p mod k=? =左右没有空格 样例输入 Sample Input 2  10  9 样例输出 Sample Outp

codevs 1497取余运算

1497 取余运算 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamon 题目描述 Description 输入b,p,k的值,编程计算bp mod k的值.其中的b,p,k*k为长整型数(2^31范围内). 输入描述 Input Description b p k 输出描述 Output Description 输出b^p mod k=? =左右没有空格 样例输入 Sample Input 2  10  9 样例输出 Sample Output 2^10 mod

洛谷——P1226 取余运算||快速幂

P1226 取余运算||快速幂 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 输入输出样例 输入样例#1: 复制 2 10 9 输出样例#1: 复制 2^10 mod 9=7 快速幂取膜版 #include<cstdio> #include<cstring> #include<iostream> #include<al

为什么Java的hash表的长度一直是2的指数次幂?为什么这个(hash&amp;(h-1)=hash%h)位运算公式等价于取余运算?

1.什么是hash表? 答:简单回答散列表,运算在hash结构散列(分散)存放. 2.如何散列排布,如果均匀排布? 答:取余运算 3.Java中如何实现? 答:hash&(h-1) 4.为什么hash&(h-1)=等价于hash%h java的h(表长)一定是2的指数次幂,2的指数次幂2n 2n的结果:一定长这样10000...(n个0) 2n-1的结果:一定这样1111(n-1)个1 举个例子: 当h=16,对应的二进制:00010000 h-1=15,对应的二进制:00001111 可

Math——取模运算及取余运算

取模运算及取余运算 取余运算(Complementation)即我们小学时学的数学算术概念,而取模运算(Modulus Operation)常用于程序设计中 公式 a%b = a - (a/b * b) 取整运算 要明白取模运算和取余运算之间的区别,首先要了解取整运算(Round Operation) 取整运算常用的有三种,向负无穷取整,向正无穷取整,向零取整 以lua语言为例,lua的math数学库提供三个取整函数,floor向负无穷取整,ceil向正无穷取整,modf向零取整 (PS:lua

取余运算||快速幂

题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出"b^p mod k=s" s为运算结果 思路: 显然取余和乘法谁都会 关键在于快速 我们知道乘方有一个性质 x^n=(x^2)^(n/2) 这样我们就能通过二分使时间复杂度降到log级别 你可能会说,n%2==1怎么办?? 和简单,再定义一个变量作为暂存器,乘一下x 这时候又有另一个定理 x^n=x^(n-1)*x 所以n可以减一 最

取余运算(mod)(分治)

[问题描述] 输入b,p,k的值,求bp mod k的值.其中b,p,k*k为长整形数. [输入样例]mod.in 2 10 9 [输出样例]mod.out 2^10 mod 9=7 题目的只要特点是数据过大, 下面先介绍一个原理:A*B%K = (A%K )*(B% K )%K.显然有了这个原理,就可以把较大的幂分解成较小的: 因为是2的10次方数据过大,那有什么办法可以把数据给拆开呢?2的10次方,为两个2的5次方的乘积,而2的5次方又可以 分解为两个2的2次方和一个2的一次方的乘积,利用上

luogu P1226 取余运算||快速幂

题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 输入输出样例 输入样例#1: 2 10 9 输出样例#1: 2^10 mod 9=7 快速幂,随手取膜 #include<cstdio> #include<iostream> using namespace std; int b,p,k; #define LL long long LL q_