一种有效避免死锁的互斥锁设计

下面是摘自网络的一段话,我觉得很好;对认识锁很有帮助。

“为什么要加锁?加锁是为了防止不同的线程访问同一共享资源造成混乱。

打个比方:人是不同的线程,卫生间是共享资源。

你在上洗手间的时候肯定要把门锁上吧,这就是加锁,只要你在里面,这个卫生间就被锁了,只有你出来之后别人才能用。想象一下如果卫生间的门没有锁会是什么样?

什么是加锁粒度呢?所谓加锁粒度就是你要锁住的范围是多大。

比如你在家上卫生间,你只要锁住卫生间就可以了吧,不需要将整个家都锁起来不让家人进门吧,卫生间就是你的加锁粒度。

怎样才算合理的加锁粒度呢?

其实卫生间并不只是用来上厕所的,还可以洗澡,洗手。这里就涉及到优化加锁粒度的问题。

你在卫生间里洗澡,其实别人也可以同时去里面洗手,只要做到隔离起来就可以,如果马桶,浴缸,洗漱台都是隔开相对独立的,实际上卫生间可以同时给三个人使用,当然三个人做的事儿不能一样。这样就细化了加锁粒度,你在洗澡的时候只要关上浴室的门,别人还是可以进去洗手的。如果当初设计卫生间的时候没有将不同的功能区域划分隔离开,就不能实现卫生间资源的最大化使用。这就是设计架构的重要性。”

从上述知道,有一种情况就是,当你进了卫生间,锁上了门,这时你从窗户逃走了,从而造成卫生间永远被锁住了。这就是其中一种死锁。

因此可以设想的就是,当我们从卫生间出来的时候(无论正常出来,还是飞出来,...),都能把锁打开,其它人就能进来。下面的代码就能实现这个功能。

metux.h

#ifndef MUTEX_LOCK_H
#define MUTEX_LOCK_H

#ifndef WIN32
#include <windows.h>
#endif

#ifdef __unix
#include <pthread.h>
#endif // __unix

class Mutex
{
public:
	Mutex();
	~Mutex();

	void Lock();

	void Unlock();

private:
	Mutex(const Mutex&);
	void operator=(const Mutex&);

#ifdef WIN32
	CRITICAL_SECTION m_mutex;
#endif // WIN32

#ifdef __unix
	pthread_mutex_t m_mutex;
#endif // __unix
};

class MutexLock
{
public:
	explicit MutexLock(Mutex *mutex) :m_mutex(mutex)
	{
		m_mutex->Lock();
	};
	~MutexLock()
	{
		m_mutex->Unlock();
	};

private:
	// 不允许复制
	MutexLock(const MutexLock&);
	void operator=(const MutexLock&);

	Mutex *m_mutex;
};

#endif // !MUTEX_LOCK_H

mutex.cpp

#include "mutex.h"

Mutex::Mutex()
{
#ifdef WIN32
	InitializeCriticalSection(&m_mutex);
#endif
#ifdef __unix
	pthread_mutex_init(&m_mutex, NULL);
#endif // __unix
}

Mutex::~Mutex()
{
#ifdef WIN32
	DeleteCriticalSection(&m_mutex);
#endif

#ifdef __unix
	pthread_mutex_destroy(&m_mutex);
#endif // __unix
}

void Mutex::Lock()
{
#ifdef WIN32
	EnterCriticalSection(&m_mutex);
#endif
#ifdef __unix
	pthread_mutex_lock(&m_mutex);
#endif // __unix
}

void Mutex::Unlock()
{
#ifdef WIN32
	LeaveCriticalSection(&m_mutex);
#endif
#ifdef __unix
	pthread_mutex_unlock(&m_mutex);
#endif // __unix
}

测试

Mutex mutex;

void MutexTest()
{
	MutexLock l(&mutex);
	static int  i = 0;
	printf("i = %d\n", i);
	++i;
}

原理就是,当MutexLock生命周期结束时,会调用析构函数,从而可以实现每次从卫生间出来都可以解锁。当然你可以在MutexText添加大括号({})来约束MetexLock的生命同期,从而减小锁的粒度。

这个设计无论是原理还是实现,还是蛮简单的。前提是你有这方面的经验,才会想到这种实现方法。

原文链接:http://www.guimigame.com/thread-685-1-1.html

一种有效避免死锁的互斥锁设计,布布扣,bubuko.com

时间: 2024-10-06 08:59:27

一种有效避免死锁的互斥锁设计的相关文章

互斥锁设计,有效的避免死锁

下面一段摘自网络,我觉得这是非常好的.锁是理解非常有帮助. "为什么要加锁?加锁是为了防止不同的线程訪问同一共享资源造成混乱. 打个例如:人是不同的线程,卫生间是共享资源. 你在上洗手间的时候肯定要把门锁上吧.这就是加锁,仅仅要你在里面.这个卫生间就被锁了,仅仅有你出来之后别人才干用. 想象一下假设卫生间的门没有锁会是什么样? 什么是加锁粒度呢?所谓加锁粒度就是你要锁住的范围是多大. 比方你在家上卫生间,你仅仅要锁住卫生间就能够了吧,不须要将整个家都锁起来不让家人进门吧,卫生间就是你的加锁粒度.

Linux下多线程编程之互斥锁、条件变量、信号量

1.进程创建 int pthread_create (pthread_t * thread_id, __const pthread_attr_t * __attr, void *(*__start_routine) (void *), void *__restrict __arg); 第一个参数为指向线程标识符的指针,第二个参数用来设置线程属性,第三个参数是线程运行函数的起始地址,最后一个参数是运行函数的参数. 一个实例: void *producer(void *args); pthread_

死锁现象与解决方案,开启线程的2种方式,守护线程,线程VS进程,线程互斥锁,信号量

死锁现象与解决方案 from threading import Thread,Lock,active_count import time mutexA=Lock() # 锁1 mutexB=Lock() # 锁2 class Mythread(Thread): def run(self): self.f1() self.f2() def f1(self): mutexA.acquire() print('%s 拿到A锁' %self.name) mutexB.acquire() print('%

Python36 1.joinablequeue 2.线程理论 3.多线程对比多进程 4.线程的使用方式 4.1.产生 线程的两种方式 4.2.守护线程 4.3.线程安全问题 4.3.1.互斥锁 4.3.2.死锁 4.3.3.可重入锁 4.3.4.信号量

复习1.守护进程2.互斥锁(解决数据错乱的方法)3.IPC(进程间通讯)4.生产者与消费者模型 详解:1.守护进程 一个进程可以设为另一个进程的守护进程 特点:被守护的进程结束时,守护进程也会随之结束 本质:父进程交给子进程一个任务,然而父进程 先于子进程结束了,子进程的任务也就没有必要 继续执行了 格式:开始前加 p.daemon=True 2.互斥锁(解决数据错乱的方法)方法一:互斥锁 互斥 互相排斥 锁的本质:一个标志 标志的两个状态: 1.锁定 2.未锁定 什么时候用? 当多个进程要操作

解决NSDistributedLock进程互斥锁的死锁问题(一)

在MAC下的多进程开发中,NSDistributedLock是一个非常方便的互斥锁解决方案,一般的使用方法: 12345678 NSDistributedLock *lock = [[NSDistributedLock alloc] initWithPath:@"/Users/mac/Desktop/lock.lock"];while (![lock tryLock]){ sleep(1);} //do something[lock unlock]; 但在实际使用过程中,当执行到do

iOS并发编程笔记,包含GCD,Operation Queues,Run Loops,如何在后台绘制UI,后台I/O处理,最佳安全实践避免互斥锁死锁优先级反转等,以及如何使用GCD监视进程文件文件夹,并发测试的方案等

iOS并发编程笔记,包含GCD,Operation Queues,Run Loops,如何在后台绘制UI,后台I/O处理,最佳安全实践避免互斥锁死锁优先级反转等,以及如何使用GCD监视进程文件文件夹,并发测试的方案等 线程 使用Instruments的CPU strategy view查看代码如何在多核CPU中执行.创建线程可以使用POSIX 线程API,或者NSThread(封装POSIX 线程API).下面是并发4个线程在一百万个数字中找最小值和最大值的pthread例子: #import

Java 中15种锁的介绍:公平锁,可重入锁,独享锁,互斥锁,乐观锁,分段锁,自旋锁等等(转)

Java 中15种锁的介绍 在读很多并发文章中,会提及各种各样锁如公平锁,乐观锁等等,这篇文章介绍各种锁的分类.介绍的内容如下: 公平锁 / 非公平锁 可重入锁 / 不可重入锁 独享锁 / 共享锁 互斥锁 / 读写锁 乐观锁 / 悲观锁 分段锁 偏向锁 / 轻量级锁 / 重量级锁 自旋锁 上面是很多锁的名词,这些分类并不是全是指锁的状态,有的指锁的特性,有的指锁的设计,下面总结的内容是对每个锁的名词进行一定的解释. 公平锁 / 非公平锁 公平锁 公平锁是指多个线程按照申请锁的顺序来获取锁. 非公

36 线程 队列 守护线程 互斥锁 死锁 可重入锁 信号量

线程 线程是操作系统最小的运算调度单位,被包含在进程中,一个线程就是一个固定的 执行流程 线程和进程的关系 线程不能单独存在 必须存在于进程中, 进程是一个资源单位,其包含了运行程序所需的所有资源 线程才是真正的执行单位 没有线程,进程中的资源无法被利用起来,所以一个进程至少包含一个线程,称之为主线程 当我们启动一个程序时,操作系统就会自己为这个程序创建一个主线程 线程可以由程序后期开启 ,自己开启线程称之为子线程 为什么需要线程 目的只有一个就是提高效率 就像一个车间 如果产量跟不上 就再造一

python全栈开发基础【第二十一篇】互斥锁以及进程之间的三种通信方式(IPC)以及生产者个消费者模型

一.互斥锁 进程之间数据隔离,但是共享一套文件系统,因而可以通过文件来实现进程直接的通信,但问题是必须自己加锁处理. 注意:加锁的目的是为了保证多个进程修改同一块数据时,同一时间只能有一个修改,即串行的修改,没错,速度是慢了,牺牲了速度而保证了数据安全. 1.上厕所的小例子:你上厕所的时候肯定得锁门吧,有人来了看见门锁着,就会在外面等着,等你吧门开开出来的时候,下一个人才去上厕所. from multiprocessing import Process,Lock import os import