Haoop MapReduce 的Partition和reduce端的二次排序

先贴一张原理图(摘自hadoop权威指南第三版)

实际中看了半天还是不太理解其中的Partition,和reduce端的二次排序,最终根据实验来结果来验证自己的理解

1eg 数据如下 2014010114 标识20140101日的温度为14度,需求为统计每年温度的最最高值

2014010114

2014010216

2014010317

2014010410。。。

Partition 实际是根据map 任务的key,以及reduce任务的数量来决定最终来由那个reduce来处理,默认指定reduce的方法是key的hash 对reduce的数量取模来决定由那个reduce处理,map端将年作为key,温度作为value ,不指定reduce任务的情况下 默认的reduce数量为1,按照上面的规则 hashcode%1 =0(任何数对1求模对为0) 所以看到最后输出到HDFS中的文件名为part-r-0000 证明只有1个reduce 来处理任务

为了验证上面的猜想,自己重写了Partition规则, year%2 作为规则,偶数年为reduce1 处理, 奇数年由reduce2 处理,结果发现part-r-0000

2014 17
2012 32
2010 17
2008 37

part-r-0001

2015 99
2013 29
2007 99
2001 29

其中自己在reduce端做了二次排序,二次排序的概念就是 针对这组相对的key 怎么来输出结果,默认的牌勋规则是字典排序,按照英文字母的顺序,当然自己可以重写输出的规则,自己按照年的倒序输出,试验后基本明白了 shuffle 的partion 和reduce端的二次排序

partition重写负责如下

public class WDPartition extends HashPartitioner<Text,IntWritable> {

@Override
public int getPartition(Text text, IntWritable value, int numReduceTasks) {
// TODO Auto-generated method stub
   int year = Integer.valueOf(text.toString());
   return year%2;
    }

}

reduce 的二次排序如下

public class WDSort extends WritableComparator{

public WDSort(){
                super(Text.class, true);
            }

//按照key 来降序排序
          public int compare(WritableComparable a, WritableComparable b) {

String t1 = a.toString();
                   String t2 = b.toString();
               return -Integer.compare(Integer.valueOf(t1), Integer.valueOf(t2));
           }
}

时间: 2024-11-05 13:10:20

Haoop MapReduce 的Partition和reduce端的二次排序的相关文章

MapReduce实现Reduce端Join操作实例

使用案例: 联接两张表 Table EMP:(新建文件EMP,第一行属性名不要) Name Sex Age DepNo zhang male 20 1 li female 25 2 wang female 30 3 zhou male 35 2 Table Dep:(新建文件DEP,第一行属性名不要) DepNo DepName 1 Sales 2 Dev 3 Mgt Inner join: select Name,Sex,Age,DepName from EMP inner join DEP

第2节 mapreduce深入学习:15、reduce端的join算法的实现

reduce端的join算法: 例子: 商品表数据 product: pidp0001,小米5,1000,2000p0002,锤子T1,1000,3000 订单表数据 order:       pid1001,20150710,p0001,21002,20150710,p0002,31002,20150710,p0003,3 mapReduce可以实现sql语句的功能:select ......from product p left join order o on p.pid = o.pid 思

MapReduce表连接操作之Reduce端join

一:背景 Reduce端连接比Map端连接更为普遍,因为输入的数据不需要特定的结构,但是效率比较低,因为所有数据都必须经过Shuffle过程. 二:技术实现 基本思路 (1):Map端读取所有的文件,并在输出的内容里加上标示,代表数据是从哪个文件里来的. (2):在reduce处理函数中,按照标识对数据进行处理. (3):然后根据Key去join来求出结果直接输出. 数据准备 准备好下面两张表: (1):tb_a(以下简称表A) [java] view plain copy id  name 1

MapReduce中的join算法-reduce端join

在海量数据的环境下,不可避免的会碰到join需求, 例如在数据分析时需要连接从不同的数据源中获取到数据. 假设有两个数据集:气象站数据库和天气记录数据库,并考虑如何合二为一. 一个典型的查询是:输出气象站的历史信息,同时各行记录也包含气象站的元数据信息. 气象站和天气记录的示例数据分别如下所示: Station ID            Station Name 011990-99999    SIHCCAJAVRI 012650-99999    TRNSET-HANSMOEN Statio

Hadoop.2.x_高级应用_二次排序及MapReduce端join

一.对于二次排序案例部分理解 1. 分析需求(首先对第一个字段排序,然后在对第二个字段排序) 杂乱的原始数据 排序完成的数据 a,1 a,1 b,1 a,2 a,2 [排序] a,100 b,6 ===> b,-3 c,2 b,-2 b,-2 b,1 a,100 b,6 b,-3 c,-7 c,-7 c,2 2. 分析[MapRedice过程] 1> 分析数据传入通过input()传入map() 2> map()对数据进行层层过滤,以达到我们想要的数据源, 3> 过滤方法中可添加自

hadoop reduce端联结

此例子摘自hadoop基础教程. 其中sales.txt内容如下 客户编号 客户消费额度 消费时间001 35.99 2012-03-15 002 12.29 2004-07-02 004 13.42 2005-12-20 003 499.99 2010-12-20 001 78.95 2012-04-02 002 21.99 2006-11-30 002 93.45 2008-09-10 001 9.99 2012-05-17 accounts.txt内容如下: 客户编号 姓名 注册时间001

hadoop的压缩解压缩,reduce端join,map端join

hadoop的压缩解压缩 hadoop对于常见的几种压缩算法对于我们的mapreduce都是内置支持,不需要我们关心.经过map之后,数据会产生输出经过shuffle,这个时候的shuffle过程特别需要消耗网络资源,它传输的数据量越少,对作业的运行时间越有意义,在这种情况下,我们可以对输出进行一个压缩.输出压缩之后,reducer就要接收,然后再解压,reducer处理完之后也需要做输出,也可以做压缩.对于我们程序而言,输入的压缩是我们原来的,不是程序决定的,因为输入源就是这样子,reduce

大数据【四】MapReduce(单词计数;二次排序;计数器;join;分布式缓存)

   前言: 根据前面的几篇博客学习,现在可以进行MapReduce学习了.本篇博客首先阐述了MapReduce的概念及使用原理,其次直接从五个实验中实践学习(单词计数,二次排序,计数器,join,分布式缓存). 一 概述 定义 MapReduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE).这样做的好处是可以在任务被分解后,可以通过大量机器进行并行计算,减少整个操作的时间. 适用范围:数据量大,但是数据种类小可以放入内存. 基

mapreduce 的二次排序

一: 理解二次排序的功能, 使用自己理解的方式表达(包括自定义数据类型,分区,分组,排序) 二: 编写实现二次排序功能, 提供源码文件. 三:理解mapreduce join 的几种 方式,编码实现reduce join,提供源代码,说出思路. 一: 二次排序 使用自己理解的方式表达(包括自定义数据类型,分区,分组,排序) 1.1 二次排序的功能 1. 当客户端提交一个作业的时候,hadoop 会开启yarn 接受进行数据拷贝处理,之后交友有yarn 框架上的启动服务resourcemanage