Apache Spark RDD之 RDD的操作

RDD的操作

  RDD支持两种操作:转换和动作。

1)转换,即从现有的数据集创建一个新的数据集。

2)动作,即在数据集上进行计算后,返回一个值给Driver程序。

例如,map就是一种转换,它将数据集每一个元素都传递给函数,并返回一个新的分布式数据集表示结果。另一个方面,reduce是一种动作,通过一些函数将所有元素叠加起来,并将最终结果返回Driver(还有一个并行的reduceByKey,能返回一个分布式数据集)。

下图描述了从外部数据源创建RDD,经过多次转换,通过一个动作操作将结果写回外部存储系统的逻辑运行图。整个过程的计算都是在Worker中的Executor中运行。

            图 1  RDD的创建、转换和动作的逻辑计算图

RDD的转换

RDD中的所有转换都是惰性的,也就是说,它们并不会直接计算结果。相反的,它们只是记住这些应用到基础数据集(例如一个文件)上的转换动作。只有当发生一个要求返回结果给Driver的动作时,这些转换才会真正运行。这个设计让Spark更加有效率地运行。例如我们可以实现:通过map创建的一个新数据集,并在reduce中使用,最终只返回reduce的结果给Driver,而不是整个大的新数据集。图2描述了RDD在进行groupByRey时的内部RDD转换的实现逻辑图。图3描述了reduceByKey的实现逻辑图。

      图2 RDD groupByKey的逻辑转换图  

在groupByKey的操作中,会在MapPartitionsRDD做一次Shuffle,图2中设置的分片数量是3,因此ShuffledRDD会有3个分片,ShuffledRDD实际上仅仅是从上游的任务中读取Shuffle的结果,因此图的箭头是指向上游的MapPartitionsRDD的。关于Shuffle的实现实际上要比图中展示得复杂得多。reduceByKey和groupByKey的实现差不多,它在Shuffle完成之后,需要做一次reduce。

      图3  RDD reduceByKey 的逻辑转换图

默认情况下,每一个转换过的RDD都会在它执行一个动作时被重新计算。不过也可以使用persist(或者cache)方法,在内存中持久化一个RDD。在这种情况下,Spark将会在集群中保存相关元素,下次查询这个RDD时能更快访问它。也支持在磁盘上持久化数据集,或在集群间复制数据集。

时间: 2024-10-24 15:33:02

Apache Spark RDD之 RDD的操作的相关文章

spark 笔记 6: RDD

了解RDD之前,必读UCB的论文,个人认为这是最好的资料,没有之一. http://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf A Resilient Distributed Dataset (RDD), the basic abstraction in Spark. Represents an immutable,* partitioned collection of elements that can be operated o

2018年前100名Apache Spark面试问题和解答(上)

我们知道Apache Spark现在是一项蓬勃发展的技术.因此,了解Apache Spark的各个方面以及Spark面试问题非常重要.我将介绍Spark的每个方面,这也可能是经常被问到的Spark面试问题.此外,我将尽力提供每个问题,从现在开始,您搜索最佳和所有Spark面试问题将在此结束. Apache Spark面试问题答案 一,什么是Apache Spark? Apache Spark是一个功能强大的开源灵活数据处理框架,围绕速度,易用性和复杂的分析而构建.Apache Spark在集群计

Java接入Spark之创建RDD的两种方式和操作RDD

首先看看思维导图,我的spark是1.6.1版本,jdk是1.7版本 spark是什么? Spark是基于内存计算的大数据并行计算框架.Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark 部署在大量廉价硬件之上,形成集群. 下载和安装 可以看我之前发表的博客 Spark安装 安装成功后运行示例程序 在spark安装目录下examples/src/main目录中. 运行的一个Java或Scala示例程序,使用bin/run-examp

Apache Spark RDD(Resilient Distributed Datasets)论文

Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD 抽象 2.2 Spark 编程接口 2.2.1 例子 – 监控日志数据挖掘 2.3 RDD 模型的优势 2.4 不适合用 RDDs 的应用 3 Spark 编程接口 3.1 Spark 中 RDD 的操作 3.2 举例应用 3.2.1 线性回归 3.2.2 PageRank 4 表达 RDDs 5

Spark算子:RDD基本转换操作(1)–map、flatMap、distinct

Spark算子:RDD基本转换操作(1)–map.flatMap.distinct 关键字:Spark算子.Spark RDD基本转换.map.flatMap.distinct map 将一个RDD中的每个数据项,通过map中的函数映射变为一个新的元素. 输入分区与输出分区一对一,即:有多少个输入分区,就有多少个输出分区. hadoop fs -cat /tmp/lxw1234/1.txt hello world hello spark hello hive //读取HDFS文件到RDD sca

Apache Spark 2.0三种API的传说:RDD、DataFrame和Dataset

Apache Spark吸引广大社区开发者的一个重要原因是:Apache Spark提供极其简单.易用的APIs,支持跨多种语言(比如:Scala.Java.Python和R)来操作大数据. 本文主要讲解Apache Spark 2.0中RDD,DataFrame和Dataset三种API:它们各自适合的使用场景:它们的性能和优化:列举使用DataFrame和DataSet代替RDD的场景.文章大部分聚焦DataFrame和Dataset,因为这是Apache Spark 2.0的API统一的重

Apache Spark RDD之RDD的转换

RDD的转换 Spark会根据用户提交的计算逻辑中的RDD的转换和动作来生成RDD之间的依赖关系,同时这个计算链也就生成了逻辑上的DAG.接下来以“Word Count”为例,详细描述这个DAG生成的实现过程. Spark Scala版本的Word Count程序如下: 1: val file = spark.textFile("hdfs://...") 2: val counts = file.flatMap(line => line.split(" "))

Apache Spark RDD之 RDD的检查点

RDD的检查点 RDD的缓存能够在第一次计算完成后,将计算结果保存到内存.本地文件系统或者Tachyon中.通过缓存,Spark避免了RDD上的重复计算,能够极大地提升计算速度.但是,如果缓存丢失了,则需要重新计算.如果计算特别复杂或者计算耗时特别多,那么缓存丢失对于整个Job的影响是不容忽视的.为了避免缓存丢失重新计算带来的开销,Spark又引入检查点机制. 缓存是在计算结束后,直接将计算结果通过用户定义的存储级别(存储级别定义了缓存存储的介质,现在支持内存.本地文件系统和Tachyon)写入

Apache Spark RDD之什么是RDD

什么是RDD? 官方对RDD的解释是:弹性分布式数据集,全称是Resilient Distributed Datasets.RDD是只读的.分区记录的集合.RDD只能基于在稳定物理存储中的数据集和其他已有的RDD上执行确定性操作来创建.这些确定性操作称为转换,如map.filter.groupBy.join. RDD不需物化,RDD含有如何从其他RDD衍生(即计算)出本RDD的相关信息(即Lineage),因此在RDD部分分区数据丢失的时候可以从物理存储的数据计算出相应的RDD分区. 这个数据集