二分查找的应用

 1 #include <iostream>
 2 #include <algorithm>
 3 #include <cstdio>
 4 using namespace std;
 5
 6 int a1[4001],a2[4001];
 7 int b1[4001],b2[4001];
 8 int sum1[4001*4000],sum2[4001*4000];
 9
10 int  binarySearch(int left,int right,int key)
11 {
12     __int64 ans=0; //64位整数
13     while(left<=right)
14     {
15         int mid = (left + right) / 2;
16         if(sum2[mid] == key)
17         {
18             ans++;
19             for(int i=mid-1; i>=left; i--)   //搜到后可能相邻的左边有相等的也满足条件的数!
20             {
21                 if(sum2[i]!=key)
22                 {
23                     break;
24                 }
25                 ans++;
26             }
27             for(int j=mid+1; j<=right; j++)
28             {
29                 if(sum2[j]!=key)
30                 {
31                     break;
32                 }
33                 ans++;
34             }
35             return ans;
36         }
37         else if(sum2[mid] < key) left = mid+1;
38         else right = mid -1;
39     }
40     return 0;
41 }
42
43 int main()
44 {
45     int n;
46     cin>>n;
47     __int64 ans=0;
48     for(int i = 0; i < n; i++)
49     {
50         cin>>a1[i]>>a2[i]>>b1[i]>>b2[i];
51
52     }
53     int times = 0;
54     for(int i = 0; i < n; i++) //四数相加转化为两数,通过两两随机相加,以便二分
55         for(int j = 0; j < n; j++)
56         {
57             sum1[times] = a1[i] + a2[j];
58             sum2[times] = b1[i] + b2[j];
59             times++; //加时的下表
60         }
61     sort(sum2,sum2 + times);
62
63     for(int i = 0; i < times; i++)
64     {
65         int key = -sum1[i];
66         ans += binarySearch(0,times-1,key);
67     }
68     cout<<ans<<endl;
69     return 0;
70 }

二分 基础

Time Limit:15000MS     Memory Limit:228000KB     64bit IO Format:%I64d & %I64u

Description

The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .

Input

The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 2 28 ) that belong respectively to A, B, C and D .

Output

For each input file, your program has to write the number quadruplets whose sum is zero.

Sample Input

6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45

Sample Output

5

Hint

Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).

时间: 2024-10-12 11:43:46

二分查找的应用的相关文章

二分查找

递归版(在区间[x, y)中找v的位置) 1 //递归版二分查找 2 int bsearch(int * A, int x, int y, int v) 3 { 4 5 if(v<a[x] || v>a[y-1]) return -1; 6 int m = x + (y-x)/2; //此处能不能用int m = (x+y)/2,需要仔细考虑(暂时想不到原因) 7 if(A[m]==v) return m; 8 else if(A[m]>v) return bsearch(A, x, m

二分查找总结

最近刷leetcode和lintcode,做到二分查找的部分,发现其实这种类型的题目很有规律,题目大致的分为以下几类: 1.最基础的二分查找题目,在一个有序的数组当中查找某个数,如果找到,则返回这个数在数组中的下标,如果没有找到就返回-1或者是它将会被按顺序插入的位置.这种题目继续进阶一下就是在有序数组中查找元素的上下限.继续做可以求两个区间的交集. 2.旋转数组问题,就是将一个有序数组进行旋转,然后在数组中查找某个值,其中分为数组中有重复元素和没有重复元素两种情况. 3.在杨氏矩阵中利用二分查

二分查找JAVA实现

二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好:其缺点是要求待查表为有序表,且插入删除困难.因此,折半查找方法适用于不经常变动而查找频繁的有序列表.首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功:否则利用中间位置记录将表分成前.后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表.重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功. 一.概念 二分查

rwkj 1430 二分查找

#include<iostream>using namespace std;int n,k,a[10000]; int binsearch(int low,int high){ int i,len,s;while(low<high) { len=(high+low)/2; for(s=0,i=0;i<n;i++) s+=a[i]/len; if(s>k) low=len+1; else if(s<k) high=len-1; else return len; }}int

uva:10487 - Closest Sums(二分查找)

题目:10487 - Closest Sums 题目大意:给出一组数据,再给出m个查询的数字.要求找到这组数据里的两个数据相加的和最靠近这个查询的数据,输出那两个数据的和. 解题思路:二分查找,这样找到的话,就输出查询的数值,但是要注意找不到的情况:这里最靠近的值不一定是在找不到的时刻的前一次数据,所以要维护最靠近的要查询数的数值. 代码: #include <stdio.h> #include <algorithm> #include <stdlib.h> using

php二分查找

<?php /** * 二分查找:查找一个值在数组中的位置 *@$val:查找的值 *@$arr:操作的数组,前提是按顺序排列 */ header("content-type:text/html;charset = utf-8"); function biary_search($arr,$val){ $num = count($arr); $low = 0; $high = $num - 1; while($low<$high){ $mid = floor(($high-$

二分查找算法的 JavaScript 实现

二分查找在查找[指定值]在[有序]数据中的[位置]时是一种高效的算法. 以下仅提供 ES5 版本. var arr = [0, 2, 4, 27, 28, 54, 67, 74, 75, 79, 86, 97, 289, 290, 678] function binarySearch(arr, val) { var start = 0, end = arr.length - 1; while (start <= end) { var mid = Math.floor((start + end)

深入浅出数据结构C语言版(12)——从二分查找到二叉树

在很多有关数据结构和算法的书籍或文章中,作者往往是介绍完了什么是树后就直入主题的谈什么是二叉树balabala的.但我今天决定不按这个套路来.我个人觉得,一个东西或者说一种技术存在总该有一定的道理,不是能解决某个问题,就是能改善解决某个问题的效率.如果能够先了解到存在的问题以及已存在的解决办法的不足,那么学习新的知识就更容易接受,也更容易理解. 万幸的是,二叉树的讲解是可以按照上述顺序来进行的.那么,今天在我们讨论二叉树之前,我们先来讨论一种情形.一种操作:假设现在有一个数组,数组中的数据按照某

二分查找法

今年是大年初四,晚上闲的没事儿干,在手机上随手写了二分查找法,对有序数组或者循环有序数组都挺管用! public int binarySearch(int []nums,int key){ return binarySearch(nums,key,0,nums.length); } public int binarySearch(int []nums,int key,int left,int right){ int mid = (left + right) / 2; if(left <= rig

二分查找和斐波那契查找

二分查找 说明:查找的数组或列表必须是有序的,若无序,先进行排序 复杂度:时间复杂度 O(log2n),空间复杂度O(n) C++源码(递归和非递归两个版本) #include <iostream> using namespace std; int a[] = { 1, 2, 3, 4, 5, 6, 8 }; int BinarySearch1(int l, int r, int value) { int mid = (l + r) / 2; if (l == r && a[l