接触数据挖掘快有一年了,早期在学生团队做过一些D3数据可视化方面的工作,今年上半年开始数据挖掘实践。想把这个爱好发展成事业。有在kaggle混迹,算个数据新手,但一直不承认:你是新人,所以成绩不好看没啥关系。
小试牛刀
之前偶然的机会看到了datacastle大数据竞赛平台的“猫狗大战”竞赛,本着好奇和体验一下的心态就参加了。但是我本身对图像识别这一块并不是特别熟悉,所以在前期的上手过程中遇到了很多麻烦,甚至一度有放弃的想法。在很长一段时间内,我都没有去思考有关这个竞赛的问题。
过程艰难
一开始,我就把一屏的代码放进了我的jupyter notebook中,一步一步试水。很明显,我的很多依赖包都没安装,所以也是错误不断。
早先是在Windows系统下,使用python2.7,需要什么包,就安装什么包。在安装keras过程中,我发现了Anaconda——很好用的一个科学计算环境,集成了各种数据挖掘包。即使是这样,仍然是满屏的错误,亟待排查。
初见曙光
后来上论坛逛过几次。一次偶然的机会,让我看到了yinjh团队分享的vgg16模型。乍一看,代码简单、效果不错。更为重要的是,这个模型自己以前从未见过。于是抱着验证学习的态度,我把代码扣了下来,打算自己照着做一遍。
一开始,我就把一屏的代码放进了我的jupyter notebook中,一步一步试水。很明显,我的很多依赖包都没安装,所以也是错误不断。
早先是在Windows系统下,使用python2.7,需要什么包,就安装什么包。在安装keras过程中,我发现了Anaconda——很好用的一个科学计算环境,集成了各种数据挖掘包。即使是这样,仍然是满屏的错误,亟待排查。
欣喜万分
离比赛截止就还只有几天,一边准备期末考试,一边焦急地排查bug。Windows系统下仍有个别难以解决的错误,我索性切换到了做NAO机器人时装的Ubuntu系统下。
结合keras给的官方文档,我对原代码进行了函数拆分解耦,又在循环体部分增加了异常检测。综合考虑性能,稍微修改了循环结构。下载好训练的vgg16_weights,在没有错误之后,焦急地等待25分钟后,屏幕开始打印结果。
第一次提交,随便截取了前面一段,没成绩。折腾了几次,才发现是提交的格式出了问题。后面取p=0.99+部分,提交结果在0.58左右,数据集大概有90个。
估计了下,狗狗总数应该在180左右。第二次提交,取了180左右,结果0.97多一点。第三次,也是最后一次提交,取了result前189个,结果0.98639,一举升到第一。
代码分享及思路详解
以下操作均在Ubuntu14.04+Anaconda中进行
导入python标准包
In [ ]:
import os # 处理字符串路径 import glob # 用于查找文件
导入相关库
- keras
- keras是基于Theano的深度学习(Deep Learning)框架
- 详细信息请见keras官方文档
安装过程
conda update conda
conda update --all
conda install mingw libpython
pip install git+git://github.com/Theano/Theano.git
pip install git+git://github.com/fchollet/keras.git
- cv2
- OpenCV库
conda isntall opnecv
- OpenCV库
- numpy
- Anaconda自带
In [ ]:
from keras.models import Sequential
from keras.layers.core import Flatten, Dense, Dropout
from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D
from keras.optimizers import SGD
import cv2, numpy as np
使用keras建立vgg16模型
- 参考官方示例
In [ ]:
def VGG_16(weights_path=None): model = Sequential() model.add(ZeroPadding2D((1,1),input_shape=(3,224,224))) model.add(Convolution2D(64, 3, 3, activation=‘relu‘)) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(64, 3, 3, activation=‘relu‘)) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(128, 3, 3, activation=‘relu‘)) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(128, 3, 3, activation=‘relu‘)) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(256, 3, 3, activation=‘relu‘)) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(256, 3, 3, activation=‘relu‘)) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(256, 3, 3, activation=‘relu‘)) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation=‘relu‘)) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation=‘relu‘)) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation=‘relu‘)) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation=‘relu‘)) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation=‘relu‘)) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation=‘relu‘)) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(Flatten()) model.add(Dense(4096, activation=‘relu‘)) model.add(Dropout(0.5)) model.add(Dense(4096, activation=‘relu‘)) model.add(Dropout(0.5)) model.add(Dense(1000, activation=‘softmax‘)) if weights_path: model.load_weights(weights_path) return model
引入训练好的vgg16_weights模型
Note:
- vgg16_weights.h5需单独下载,并与代码文件处于同一文件夹下,否则会报错。
- 网上有资源 附百度云盘链接 vgg16_weights.h5下载
In [ ]:
model = VGG_16(‘vgg16_weights.h5‘)
In [ ]:
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)model.compile(optimizer=sgd, loss=‘categorical_crossentropy‘)
猫和狗的特征
In [ ]:
dogs=[251, 268, 256, 253, 255, 254, 257, 159, 211, 210, 212, 214, 213, 216, 215, 219, 220, 221, 217, 218, 207, 209, 206, 205, 208, 193, 202, 194, 191, 204, 187, 203, 185, 192, 183, 199, 195, 181, 184, 201, 186, 200, 182, 188, 189, 190, 197, 196, 198, 179, 180, 177, 178, 175, 163, 174, 176, 160, 162, 161, 164, 168, 173, 170, 169, 165, 166, 167, 172, 171, 264, 263, 266, 265, 267, 262, 246, 242, 243, 248, 247, 229, 233, 234, 228, 231, 232, 230, 227, 226, 235, 225, 224, 223, 222, 236, 252, 237, 250, 249, 241, 239, 238, 240, 244, 245, 259, 261, 260, 258, 154, 153, 158, 152, 155, 151, 157, 156]cats=[281,282,283,284,285,286,287]
待处理文件导入
Note:
- 将测试集改名为test,放入imgs文件夹下,imgs文件夹又与此代码处于同一文件夹下。
- 当然,你也可以修改下面的路径。
In [ ]:
path = os.path.join(‘imgs‘, ‘test‘, ‘*.jpg‘) #拼接路径 files = glob.glob(path) #返回路径
定义几个变量
In [ ]:
result=[]
In [ ]:
flbase=0p=0temp=0
定义图像加载函数
In [ ]:
def load_image(imageurl): im = cv2.resize(temp ,(224,224)).astype(np.float32) im[:,:,0] -= 103.939 im[:,:,1] -= 116.779 im[:,:,2] -= 123.68 im = im.transpose((2,0,1)) im = np.expand_dims(im,axis=0) return im
定义预测函数
In [ ]:
def predict(url): im = load_image(url) out = model.predict(im) flbase = os.path.basename(url) p = np.sum(out[0,dogs]) / (np.sum(out[0,dogs]) + np.sum(out[0,cats])) result.append((flbase,p))
开始预测
Note:
- 此处的if,else异常检测很重要,因为cv2.imread(fl)在遇到某几张图时会为空,抛出错误,程序中途停止,图片集得不到完全检测。
- 一般配置电脑跑这部分时,大约需要20~30分钟,不是程序没有工作,请耐心等待。
In [ ]:
for fl in files: temp=cv2.imread(fl) if temp ==None: pass else: predict(fl)
对结果进行排序
In [ ]:
result=sorted(result, key=lambda x:x[1], reverse=True)
打印预测结果与相应概率
In [ ]:
for x in result: print x[0],x[1]
预测结果
- 根据上面的概率,选择相应的前多少张图片
- 复制进csv文件,使用一般编辑器将".jpg"以空格替代
In [ ]:
for x in result: print x[0]
ps:完整的代码可以在github下载
https://github.com/KuHung/DateCastle/blob/master/catdog.ipynb
关注datacastle查看更多竞赛信息和技术分享