c/c++ 用普利姆(prim)算法构造最小生成树

c/c++ 用普利姆(prim)算法构造最小生成树

最小生成树(Minimum Cost Spanning Tree)的概念:

? 假设要在n个城市之间建立公路,则连通n个城市只需要n-1条线路。这时,自然会考虑,如何在最节省经费的前提下建立这个公路网络。

? 每2个城市之间都可以设置一条公路,相应地都要付出一定的经济代价。n个城市之间,最多可以设置n(n-1)/2条线路,那么,如何在这些可能的线路中选择n-1条,以使总的耗费最少?

普利姆(prim)算法的大致思路:

? 大致思想是:设图G顶点集合为U,首先任意选择图G中的一点作为起始点a,将该点加入集合V,再从集合U-V中找到另一点b使得点b到V中任意一点的权值最小,此时将b点也加入集合V;以此类推,现在的集合V={a,b},再从集合U-V中找到另一点c使得点c到V中任意一点的权值最小,此时将c点加入集合V,直至所有顶点全部被加入V,此时就构建出了一颗MST。因为有N个顶点,所以该MST就有N-1条边,每一次向集合V中加入一个点,就意味着找到一条MST的边。

用图示和代码说明:

初始状态:

设置2个数据结构:

lowcost[i]:表示以i为终点的边的最小权值,当lowcost[i]=0说明以i为终点的边的最小权值=0,也就是表示i点加入了MST

mst[i]:表示对应lowcost[i]的起点,即说明边<mst[i],i>是MST的一条边,当mst[i]=0表示起点i加入MST

我们假设V1是起始点,进行初始化(*代表无限大,即无通路):

lowcost[2]=6,lowcost[3]=1,lowcost[4]=5,lowcost[5]=,lowcost[6]=

mst[2]=1,mst[3]=1,mst[4]=1,mst[5]=1,mst[6]=1,(所有点默认起点是V1)

明显看出,以V3为终点的边的权值最小=1,所以边<mst[3],3>=1加入MST

此时,因为点V3的加入,需要更新lowcost数组和mst数组:

lowcost[2]=5,lowcost[3]=0,lowcost[4]=5,lowcost[5]=6,lowcost[6]=4

mst[2]=3,mst[3]=0,mst[4]=1,mst[5]=3,mst[6]=3

明显看出,以V6为终点的边的权值最小=4,所以边<mst[6],6>=4加入MST

此时,因为点V6的加入,需要更新lowcost数组和mst数组:

lowcost[2]=5,lowcost[3]=0,lowcost[4]=2,lowcost[5]=6,lowcost[6]=0

mst[2]=3,mst[3]=0,mst[4]=6,mst[5]=3,mst[6]=0

明显看出,以V4为终点的边的权值最小=2,所以边<mst[4],4>=4加入MST

此时,因为点V4的加入,需要更新lowcost数组和mst数组:

lowcost[2]=5,lowcost[3]=0,lowcost[4]=0,lowcost[5]=6,lowcost[6]=0

mst[2]=3,mst[3]=0,mst[4]=0,mst[5]=3,mst[6]=0

明显看出,以V2为终点的边的权值最小=5,所以边<mst[2],2>=5加入MST

此时,因为点V2的加入,需要更新lowcost数组和mst数组:

lowcost[2]=0,lowcost[3]=0,lowcost[4]=0,lowcost[5]=3,lowcost[6]=0

mst[2]=0,mst[3]=0,mst[4]=0,mst[5]=2,mst[6]=0

很明显,以V5为终点的边的权值最小=3,所以边<mst[5],5>=3加入MST

lowcost[2]=0,lowcost[3]=0,lowcost[4]=0,lowcost[5]=0,lowcost[6]=0

mst[2]=0,mst[3]=0,mst[4]=0,mst[5]=0,mst[6]=0

至此,MST构建成功,如图所示:

mixSpanTree.h

#ifndef __mixspantree__
#define __mixspantree__

#include <stdio.h>
#include <malloc.h>
#include <assert.h>
#include <memory.h>

#define Default_vertex_size 20

#define T char//dai biao ding dian de lei xing
#define E int
#define MAX_COST 0x7FFFFFFF

typedef struct GraphMtx{
  int MaxVertices;//zui da ding dian shu liang]
  int NumVertices;//shi ji ding dian shu liang
  int NumEdges;//bian de shu lian

  T* VerticesList;//ding dian list
  int** Edge;//bian de lian jie xin xi, bu shi 0 jiu shi 1
}GraphMtx;

//chu shi hua tu
void init_graph(GraphMtx* gm);
//打印二维数组
void show_graph(GraphMtx* gm);
//插入顶点
void insert_vertex(GraphMtx* gm, T v);
//添加顶点间的线
void insert_edge(GraphMtx* gm, T v1, T v2, E cost);
//删除顶点
void remove_vertex(GraphMtx* gm, T v);
//删除顶点间的线
void remove_edge(GraphMtx* gm, T v1, T v2);
//摧毁图
void destroy_graph(GraphMtx* gm);
//取得与v顶点有连线的第一个顶点
int getNeighbor(GraphMtx* gm, T v);
//取得与v1顶点,v1顶点之后的v2顶点的之后的有连线的第一个顶点
int getNextNeighbor(GraphMtx* gm, T v1, T v2);

//用prim算法作成最小树
void minSpanTree_prim(GraphMtx* gm, T v);
//取得2个顶点间的权重
E getWeight(GraphMtx* g, int i1, int i2);

#endif

mixSpanTree.c

#include "mixSpanTree.h"

void init_graph(GraphMtx* gm){
  gm->MaxVertices = Default_vertex_size;
  gm->NumEdges = gm->NumVertices = 0;

  //kai pi ding dian de nei cun kong jian
  gm->VerticesList = (T*)malloc(sizeof(T) * (gm->MaxVertices));
  assert(NULL != gm->VerticesList);

  //创建二维数组
  //让一个int的二级指针,指向一个有8个int一级指针的数组
  //开辟一个能存放gm->MaxVertices个int一级指针的内存空间
  gm->Edge = (int**)malloc(sizeof(int*) * (gm->MaxVertices));
  assert(NULL != gm->Edge);
  //开辟gm->MaxVertices组,能存放gm->MaxVertices个int的内存空间
  for(int i = 0; i < gm->MaxVertices; ++i){
    gm->Edge[i] = (int*)malloc(sizeof(int) * gm->MaxVertices);
  }
  //初始化二维数组
  //让每个顶点之间的边的关系都为不相连的
  for(int i = 0; i < gm->MaxVertices; ++i){
    for(int j = 0; j < gm->MaxVertices; ++j){
      if(i == j)
    gm->Edge[i][j] = 0;
      else
    gm->Edge[i][j] = MAX_COST;
    }
  }
}
//打印二维数组
void show_graph(GraphMtx* gm){
  printf("  ");
  for(int i = 0; i < gm->NumVertices; ++i){
    printf("%c  ", gm->VerticesList[i]);
  }
  printf("\n");
  for(int i = 0; i < gm->NumVertices; ++i){
    //在行首,打印出顶点的名字
    printf("%c:", gm->VerticesList[i]);
    for(int j = 0; j < gm->NumVertices; ++j){
      if(gm->Edge[i][j] == MAX_COST){
    printf("%c  ", ‘*‘);
      }
      else{
    printf("%d  ", gm->Edge[i][j]);
      }
    }
    printf("\n");
  }
  printf("\n");
}
//插入顶点
void insert_vertex(GraphMtx* gm, T v){
  //顶点空间已满,不能再插入顶点了
  if(gm->NumVertices >= gm->MaxVertices){
    return;
  }
  gm->VerticesList[gm->NumVertices++] = v;
}

int getVertexIndex(GraphMtx* gm, T v){
  for(int i = 0; i < gm->NumVertices; ++i){
    if(gm->VerticesList[i] == v)return i;
  }
  return -1;
}
//添加顶点间的线
void insert_edge(GraphMtx* gm, T v1, T v2, E cost){
  if(v1 == v2)return;

  //查找2个顶点的下标
  int j = getVertexIndex(gm, v1);
  int k = getVertexIndex(gm, v2);
  //说明找到顶点了,并且点之间还没有线
  if(j != -1 && k != -1 ){
    //因为是无方向,所以更新2个值
    gm->Edge[j][k] = gm->Edge[k][j] = cost;
    //边数加一
    gm->NumEdges++;
  }
}
//删除顶点间的线
void remove_edge(GraphMtx* gm, T v1, T v2){
  if(v1 == v2)return;
  //查找2个顶点的下标
  int j = getVertexIndex(gm, v1);
  int k = getVertexIndex(gm, v2);
  //说明找到顶点了,并且点之间还有线
  if(j != -1 && k != -1 && gm->Edge[j][k] == 1){
    //因为是无方向,所以更新2个值
    gm->Edge[j][k] = gm->Edge[k][j] = 0;
    //边数减一
    gm->NumEdges--;
  }
}
//删除顶点
void remove_vertex(GraphMtx* gm, T v){
  int k = getVertexIndex(gm, v);
  if(-1 == k)return;

  //算出和要删除节点相关的边的数量,并减少。
  for(int i = 0; i < gm->NumVertices; ++i){
    if(gm->Edge[k][i] == 1){
      gm->NumEdges--;
    }
  }

  //如果要删除的顶点不是最后一个顶点
  if(k != gm->NumVertices - 1){
    //把每一列向左移动一列
    for(int i = 0; i < gm->NumVertices; ++i){
      //把后面内存里的内容移动到前面,并把最后一个元素设置成0
      memmove(&(gm->Edge[i][k]), &(gm->Edge[i][k+1]), sizeof(int) * (gm->NumVertices-1-k));
      gm->Edge[i][gm->NumVertices - 1] = 0;
    }
    //把每一行向上移动一行
    for(int i = k; i < gm->NumVertices - 1; ++i){
      memmove(gm->Edge[i], gm->Edge[i+1], sizeof(int) * (gm->NumVertices-1));
    }
    memset(gm->Edge[gm->NumVertices - 1], 0, sizeof(int) * (gm->NumVertices - 1));
    //memmove(&(gm->Edge[k]), &(gm->Edge[k+1]), sizeof(int*) * (gm->NumVertices-1-k));
    //memset(gm->Edge[gm->NumVertices - 1], 0, sizeof(int) * (gm->NumVertices - 1));

    //删除点
    memmove(&(gm->VerticesList[k]), &(gm->VerticesList[k+1]), sizeof(T) * (gm->NumVertices-1-k));
  }
  //如果要删除的顶点是最后一个顶点
  else{
    for(int i = 0; i < gm->NumVertices; ++i){
      gm->Edge[i][k] = gm->Edge[k][i] = 0;
    }
  }

  //节点数目减1
  gm->NumVertices--;
}

//摧毁图
void destroy_graph(GraphMtx* gm){
  free(gm->VerticesList);
  for(int i = 0; i < gm->NumVertices; ++i){
    free(gm->Edge[i]);
  }
  free(gm->Edge);
  gm->Edge = NULL;
  gm->VerticesList = NULL;
  gm->MaxVertices = gm->NumVertices = gm->NumEdges = 0;
}

//取得与某顶点有连线的第一个顶点
int getNeighbor(GraphMtx* gm, T v){
  int p = getVertexIndex(gm, v);
  if(-1 == p)return -1;
  for(int i = 0; i < gm->NumVertices; ++i){
    if(gm->Edge[p][i] == 1)
      return i;
  }
  return -1;
}

//取得与v1顶点,v1顶点之后的v2顶点的之后的有连线的第一个顶点
int getNextNeighbor(GraphMtx* gm, T v1, T v2){
  if(v1 == v2)return -1;
  int p1 = getVertexIndex(gm, v1);
  int p2 = getVertexIndex(gm, v2);
  if(p1 == -1 || p2 == -1)return -1;

  for(int i = p2 + 1; i < gm->NumVertices; ++i){
    if(gm->Edge[p1][i] == 1)
      return i;
  }

  return -1;
}

//取得2个顶点间的权重
E getWeight(GraphMtx* g, int i1, int i2){
  if(i1 == -1 || i2 == -1)
    return MAX_COST;
  else
    return g->Edge[i1][i2];
}
//用prim算法作成最小树
void minSpanTree_prim(GraphMtx* g, T v){
  int n = g->NumVertices;
  E* lowcost = (E*)malloc(sizeof(E) * n);
  int* mst = (int*)malloc(sizeof(int) * n);
  assert(lowcost != NULL && mst != NULL);

  int k = getVertexIndex(g, v);

  for(int i = 0; i < n; ++i){
    if(i != k){
      lowcost[i] = getWeight(g, k, i);
      mst[i] = k;
    }
    else{
      lowcost[i] = 0;
    }
  }

  int min, min_index;
  int begin, end;
  E cost;
  for(int i = 0; i < n - 1; ++i){
    min = MAX_COST;
    min_index = -1;
    for(int j = 0; j < n; ++j){
      if(lowcost[j] != 0 && lowcost[j] < min){
    min = lowcost[j];
    min_index = j;
      }
    }
    begin = mst[min_index];
    end = min_index;
    printf("%c->%c:%d\n",g->VerticesList[begin],g->VerticesList[end],min);

    lowcost[min_index] = 0;

    for(int j = 0; j < n; ++j){
      cost = getWeight(g, min_index, j);
      if(cost < lowcost[j]){
    lowcost[j] = cost;
    mst[j] = min_index;
      }
    }
  }

}

mixSpanTreemain.c

#include "mixSpanTree.h"

int main(){
  GraphMtx gm;
  //初始化图
  init_graph(&gm);
  //插入顶点
  insert_vertex(&gm, ‘A‘);
  insert_vertex(&gm, ‘B‘);
  insert_vertex(&gm, ‘C‘);
  insert_vertex(&gm, ‘D‘);
  insert_vertex(&gm, ‘E‘);
  insert_vertex(&gm, ‘F‘);

  //添加连线
  insert_edge(&gm, ‘A‘, ‘B‘, 6);
  insert_edge(&gm, ‘A‘, ‘D‘, 5);
  insert_edge(&gm, ‘A‘, ‘C‘, 1);
  insert_edge(&gm, ‘B‘, ‘E‘, 3);
  insert_edge(&gm, ‘B‘, ‘C‘, 5);
  insert_edge(&gm, ‘C‘, ‘E‘, 6);
  insert_edge(&gm, ‘C‘, ‘D‘, 5);
  insert_edge(&gm, ‘C‘, ‘F‘, 4);
  insert_edge(&gm, ‘F‘, ‘E‘, 6);
  insert_edge(&gm, ‘D‘, ‘F‘, 2);
  //打印图
  show_graph(&gm);

  //prim
  minSpanTree_prim(&gm, ‘E‘);

  //摧毁图
  destroy_graph(&gm);

}

完整代码

编译方法: gcc -g mixSpanTree.c mixSpanTreemain.c

原文地址:https://www.cnblogs.com/xiaoshiwang/p/9418632.html

时间: 2024-09-29 18:28:21

c/c++ 用普利姆(prim)算法构造最小生成树的相关文章

普里姆Prim算法 - 图解最小生成树

我们在图的定义中说过,带有权值的图就是网结构.一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边.所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接起来,并且使得权值的和最小.综合以上两个概念,我们可以得出:构造连通网的最小代价生成树,即最小生成树(Minimum Cost Spanning Tree). 找连通图的最小生成树,经典的有两种算法,普里姆算法和克鲁斯卡尔算法,这里介绍普里姆算法. 为了能够讲明白这个算法,我们先构造网图的邻接矩阵,

图的最小生成树(普利姆prim算法)

什么是生成树呢? 一个连通图的生成树是指一个极小连通子图, 它含有图中的全部顶点,但只有足以构成一棵树的n-1条边. 什么是最小生成树? 在一个连通图的所有生成树中,各边的代价之和最小的那棵生成树称为该连通图的最小代价生成树(MST), 简称最小生成树. 求最小生成树有两种算法,本文讲prim算法. 简略证明 使用反证法证明 设一棵最小生成树T不包含最短边a,将a加入最小生成树T中,书中必定构成一个包含a的回路,而回路中必定有边比a大(因a为最短边),则删除比a大的边得到一棵比原先T更小的树T1

普里姆(Prim)算法

1 /* 2 普里姆算法的主要思想: 3 利用二维数组把权值放入,然后找在当前顶点的最小权值,然后走过的路用一个数组来记录 4 */ 5 # include <stdio.h> 6 7 typedef char VertexType;//定义顶点类型 8 typedef int EdgeType;//定义边上的权值类型 9 # define MAX_VERTEX 100//最大顶点个数 10 # define INFINITY 65535//用65535代表无穷大 11 12 typedef

图的最小生成树之普里姆Prim算法

源代码如下: #include<iostream> using namespace std; #define MAX_VERTEX_NUM 20 #define infinity 9 typedef int QElemType; typedef int EdgeData; typedef char VertexData; typedef struct { VertexData verlist[MAX_VERTEX_NUM]; //顶点表 EdgeData edge[MAX_VERTEX_NUM

普利姆算法

普里姆(Prim)算法,和克鲁斯卡尔算法一样,求加权连通图的最小生成树的算法. 下面对算法的图例描述 ?

图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用

图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 B(G).其中 T(G)是遍历图时所经过的边的集合,B(G) 是遍历图时未经过的边的集合.显然,G1(V, T) 是图 G 的极小连通子图,即子图G1 是连通图 G 的生成树. 深度优先生成森林   右边的是深度优先生成森林: 连通图的生成树不一定是唯一的,不同的遍历图的方法得到不同的生成树;从不

普利姆算法(最小生成树)

int prim(){ int minid, i, j; double mincost; for(i = 2; i <= n; i ++){ lowcost[i] = map[1][i]; } lowcost[1] = -1; for(i = 2; i <= n; i ++){ mincost = INF; minid = 0; for(j = 2; j <= n; j ++){ if(lowcost[j] < mincost && lowcost[j] >

(转)最小生成树之普利姆算法、克鲁斯卡尔算法

 最小生成树之prim算法 边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权. 最小生成树(MST):权值最小的生成树. 生成树和最小生成树的应用:要连通n个城市需要n-1条边线路.可以把边上的权值解释为线路的造价.则最小生成树表示使其造价最小的生成树. 构造网的最小生成树必须解决下面两个问题: 1.尽可能选取权值小的边,但不能构成回路: 2.选取n-1条恰当的边以连通n个顶点: MST性质:假设G=(V,E)是一个连通网,U是顶点V的一个非空子集.若(

数据结构之 普利姆算法总结

Agri-Net Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status Description Farmer John has been elected mayor of his town! One of his campaign promises was to bring internet connectivity to all farms in the area.