HashMap的resezi方法中尾部遍历出现死循环问题 Tail Traversing (多线程)

一、背景介绍:

在看HashMap源码是看到了resize()的源代码,当时发现在将old链表中引用数据复制到新的链表中时,发现复制过程中时,源码是进行了反序,此时是允许反序存储的,同时这样设计的效率要高,不用采用尾部插入,每次都要遍历到尾部。

下面对该原理进行总结:

JDK1.7的HashMap在实现resize()时,新table[]的列表采用LIFO方式,即队头插入。这样做的目的是:避免尾部遍历。尾部遍历是为了避免在新列表插入数据时,遍历队尾的位置。因为,直接插入的效率更高。

直接采用队头插入,会使得链表数据倒序

例如原来顺序是:
10  20  30  40
插入顺序如下
10
20  10
30 20 10
40 30 20 10

二、存在的问题:

采用队头插入的方式,导致了HashMap在“多线程环境下”的死循环问题

问题的症状

从前我们的Java代码因为一些原因使用了HashMap这个东西,但是当时的程序是单线程的,一切都没有问题。后来,我们的程序性能有问题,所以需要变成多线程的,于是,变成多线程后到了线上,发现程序经常占了100%的CPU,查看堆栈,你会发现程序都Hang在了HashMap.get()这个方法上了,重启程序后问题消失。但是过段时间又会来。而且,这个问题在测试环境里可能很难重现。

我们简单的看一下我们自己的代码,我们就知道HashMap被多个线程操作。而Java的文档说HashMap是非线程安全的,应该用ConcurrentHashMap。

但是在这里我们可以来研究一下原因。

Hash表数据结构

HashMap通常会用一个指针数组(假设为table[])来做分散所有的key,当一个key被加入时,会通过Hash算法通过key算出这个数组的下标i,然后就把这个<key, value>插到table[i]中,如果有两个不同的key被算在了同一个i,那么就叫冲突,又叫碰撞,这样会在table[i]上形成一个链表。

我们知道,如果table[]的尺寸很小,比如只有2个,如果要放进10个keys的话,那么碰撞非常频繁,于是一个O(1)的查找算法,就变成了链表遍历,性能变成了O(n),这是Hash表的缺陷。

所以,Hash表的尺寸和容量非常的重要。一般来说,Hash表这个容器当有数据要插入时,都会检查容量有没有超过设定的thredhold,如果超过,需要增大Hash表的尺寸,但是这样一来,整个Hash表里的无素都需要被重算一遍。这叫rehash,这个成本相当的大。

相信大家对这个基础知识已经很熟悉了。

HashMap的rehash源代码

void transfer(Entry[] newTable, boolean rehash) {
        int newCapacity = newTable.length;
     //for循环中的代码,逐个遍历链表,重新计算索引位置,将老数组数据复制到新数组中去(数组不存储实际数据,所以仅仅是拷贝引用而已)和 arraylist 或者 linkedlist 中的clone方法是一样的 都是浅拷贝关系
        foreach (Entry<K,V> e : table) {
            while(null != e) {
                Entry<K,V> next = e.next;
                if (rehash) {
                    e.hash = null == e.key ? 0 : hash(e.key);
                }
                int i = indexFor(e.hash, newCapacity);
          //将当前entry的next链指向新的索引位置,newTable[i]有可能为空,有可能也是个entry链,如果是entry链,直接在链表头部插入。          //第一次时 newTable[i] = null
                e.next = newTable[i];
                newTable[i] = e;
                e = next;
            }
        }
    }

好了,这个代码算是比较正常的。而且没有什么问题。

正常的ReHash的过程

画了个图做了个演示。

  • 我假设了我们的hash算法就是简单的用key mod 一下表的大小(也就是数组的长度)。
  • 最上面的是old hash 表,其中的Hash表的size=2, 所以key = 3, 7, 5,在mod 2以后都冲突在table[1]这里了。
  • 接下来的三个步骤是Hash表 resize成4,然后所有的<key,value> 重新rehash的过程

并发下的Rehash

1)假设我们有两个线程。我用红色和浅蓝色标注了一下。

我们再回头看一下我们的 transfer代码中的这个细节:

int i = indexFor(e.hash, newCapacity); //假设线程一执行到这 失去了运行权限
//将当前entry的next链指向新的索引位置,newTable[i]有可能为空,有可能也是个entry链,如果是entry链,直接在链表头部插入。
//第一次时 newTable[i] = null

e.next = newTable[i];
newTable[i] = e;
e = next;

而我们的线程二执行完成了。于是我们有下面的这个样子。

注意,因为Thread1的 e 指向了key(3),而next指向了key(7),其在线程二rehash后,指向了线程二重组后的链表。我们可以看到链表的顺序被反转后。

2)线程一被调度回来执行。

  • 先是执行 newTalbe[i] = e;
  • 然后是e = next,导致了e指向了key(7),
  • 而下一次循环的next = e.next导致了next指向了key(3)

3)一切安好。

线程一接着工作。把key(7)摘下来,放到newTable[i]的第一个,然后把e和next往下移。

4)环形链接出现。

e.next = newTable[i] 导致  key(3).next 指向了 key(7)

注意:此时的key(7).next 已经指向了key(3), 环形链表就这样出现了。

于是,当我们的线程一调用到,HashTable.get(11)时,悲剧就出现了——Infinite Loop。

三、问题解决:

JDK1.8的优化

通过增加tail指针,既避免了死循环问题(让数据直接插入到队尾),又避免了尾部遍历。

个人感觉这个改进就好多了,在jdk1.8的 LinkedList 类中  也是通过 一个 头 和 尾 来实现设计,这样既避免了出错,又提高了操作效率。

代码如下:

 if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;    // JDK1.8改进了rehash算法,扩容时,容量翻倍,新扩容部分,标识为hi,原来old的部分标识为lo
                        Node<K,V> hiHead = null, hiTail = null;    // 声明了队尾和队头指针。
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }

原文地址:https://www.cnblogs.com/gxyandwmm/p/9537669.html

时间: 2024-11-13 06:57:40

HashMap的resezi方法中尾部遍历出现死循环问题 Tail Traversing (多线程)的相关文章

转!! Java中如何遍历Map对象的4种方法

在Java中如何遍历Map对象 How to Iterate Over a Map in Java 在java中遍历Map有不少的方法.我们看一下最常用的方法及其优缺点. 既然java中的所有map都实现了Map接口,以下方法适用于任何map实现(HashMap, TreeMap, LinkedHashMap, Hashtable, 等等) 方法一 在for-each循环中使用entries来遍历 这是最常见的并且在大多数情况下也是最可取的遍历方式.在键值都需要时使用. [java] view

HashMap的尾部遍历问题--Tail Traversing

在看网上HashMap的resize()设计时,提到尾部遍历. JDK1.7的HashMap在实现resize()时,新table[]的列表采用LIFO方式,即队头插入.这样做的目的是:避免尾部遍历. 避免尾部遍历是为了避免在新列表插入数据时,遍历到队尾的位置.因为,直接插入的效率更高. 对resize()的设计来说,本来就是要创建一个新的table,列表的顺序不是很重要. 但如果要确保插入队尾,还得遍历出链表的队尾位置,然后插入,是一种多余的损耗. 直接采用队头插入,会使得链表数据倒序 例如原

(转载)Java中如何遍历Map对象的4种方法

在Java中如何遍历Map对象 How to Iterate Over a Map in Java 在java中遍历Map有不少的方法.我们看一下最常用的方法及其优缺点. 既然java中的所有map都实现了Map接口,以下方法适用于任何map实现(HashMap, TreeMap, LinkedHashMap, Hashtable, 等等) 方法一 在for-each循环中使用entries来遍历 这是最常见的并且在大多数情况下也是最可取的遍历方式.在键值都需要时使用. Map<Integer,

Java中如何遍历Map对象的4种方法

在Java中如何遍历Map对象 How to Iterate Over a Map in Java 在java中遍历Map有不少的方法.我们看一下最常用的方法及其优缺点. 既然java中的所有map都实现了Map接口,以下方法适用于任何map实现(HashMap, TreeMap, LinkedHashMap, Hashtable, 等等) 方法一 在for-each循环中使用entries来遍历 这是最常见的并且在大多数情况下也是最可取的遍历方式.在键值都需要时使用. [java] view

iOS中数组遍历的方法及比较

数组遍历是编码中很常见的一种需求,我们来扒一拔iOS里面都有什么样的方法来实现,有什么特点. 因为iOS是兼容C语言的,所以C语言里面的最最常见的for循环遍历是没有问题的. 本文中用的数组是获取的系统的语言数组,大约有30多个数据,虽然还不够模拟大批量的数据,但对于方法的验证是没有问题的了. NSArray *langArray = [[NSUserDefaults standardUserDefaults] arrayForKey:@"AppleLanguages"]; 第一种方法

ios中集合遍历方法的比较和技巧

本文原文发表自我的[自建博客],cnblogs同步发表,格式未经调整,内容以原博客为准 我是前言 集合的遍历操作是开发中最常见的操作之一,从C语言经典的for循环到利用多核cpu的优势进行遍历,开发中ios有若干集合遍历方法,本文通过研究和测试比较了各个操作方法的效率和优略势,并总结几个使用集合遍历时的小技巧. ios中常用的遍历运算方法 遍历的目的是获取集合中的某个对象或执行某个操作,所以能满足这个条件的方法都可以作为备选: 经典for循环 for in (NSFastEnumeration)

PHP中数组遍历常用几种方法

在编码的过程中,对指定的数组进行遍历是再常见不过的事了.在遍历的过程中,很多的语言都是利用for循环进行遍历,方便快捷.但是PHP中,对于数组的下标与有些语言不同.PHP中数组的下标可以为字符串,也可以字符串和数字混合,也就是所谓的关联数组.如果下标是纯数字的话,那就是索引数组了. 1.for() for()进行遍历时,有个局限,如果是关联数组的话,就不能根据下标的递增来遍历了,突然冒出了字符串的话,肯定会报错.所以在PHP中,for()能使用的范围也就是索引数组了. <?php     $ar

leetCode 94.Binary Tree Inorder Traversal(二叉树中序遍历) 解题思路和方法

Given a binary tree, return the inorder traversal of its nodes' values. For example: Given binary tree {1,#,2,3}, 1 2 / 3 return [1,3,2]. Note: Recursive solution is trivial, could you do it iteratively? confused what "{1,#,2,3}" means? > rea

二叉树——前序遍历、中序遍历、后序遍历、层序遍历详解(递归非递归)

前言 前面介绍了二叉排序树的构造和基本方法的实现.但是排序遍历也是比较重要的一环.所以笔者将前中后序.和层序遍历梳理一遍. 了解树的遍历,需要具有的只是储备有队列,递归,和栈.这里笔者都有进行过详细介绍,可以关注笔者数据结构与算法专栏.持续分享,共同学习. 层序遍历 层序遍历.听名字也知道是按层遍历.我们知道一个节点有左右节点.而每一层一层的遍历都和左右节点有着很大的关系.也就是我们选用的数据结构不能一股脑的往一个方向钻,而左右应该均衡考虑.这样我们就选用队列来实现. 对于队列,现进先出.从根节