Solution:
- 这个高斯消元/线性基很好看出来,主要是判断在第K 次统计结束后就可以确定唯一解的地方和\(bitset\)的骚操作
- (我用的线性基)判断位置,我们可以每次加入一个线性基时判断是不是全被异或掉了,如果没有,说明这个方程不是冗余的,那么我们可记录非冗余方程个数
- 如果非冗余方程个数小于\(n\),那就是个不定方程组,有无数种解,否则,在个数第一次达到\(n\)时,就可输出当时输入方程的号码
- 还有一个点就是压空间与时间,这题主要是时间,用到大杀器\(bitset\),具体看我,这位辽宁省队巨佬的博客吧
Code:
//It is coded by Ning_Mew on 5.29
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e3+7,maxm=2e3+7;
int n,m;
int ans[maxn],tot=0;
bitset<maxn>x[maxn];
string s;
bool pr;
void push(bitset<maxn>S){
for(int i=n-1;i>=0;i--){
if(S[i]){
if(x[i][i]){S=(S^x[i]);}
else {x[i]=S;tot++;return;}
}
}
}
int main(){
scanf("%d%d",&n,&m);
if(m<n){printf("Cannot Determine\n");return 0;}
pr=false;
for(int i=1;i<=m;i++){
cin>>s; bitset<maxn>S(s);
cin>>s; if(s[0]=='1')S.flip(n);
//cout<<i<<":"<<S[0]<<' '<<S[1]<<' '<<S[2]<<' '<<S[3]<<endl;
push(S);if(tot==n&&!pr)pr=true,printf("%d\n",i);
}
if(tot<n){printf("Cannot Determine\n");return 0;}
for(int i=n-1;i>=0;i--){
for(int j=i-1;j>=0;j--){
if(x[i][j]){x[i]=(x[i]^x[j]);}
}
if(x[i][n])printf("?y7M#\n");
else printf("Earth\n");
}
return 0;
}
博主蒟蒻,随意转载。但必须附上原文链接:http://www.cnblogs.com/Ning-Mew/,否则你会终生找不到妹子!!!
原文地址:https://www.cnblogs.com/Ning-Mew/p/9107904.html
时间: 2024-10-01 02:20:45