(转)有关Queue队列

Queue

Queue是python标准库中的线程安全的队列(FIFO)实现,提供了一个适用于多线程编程的先进先出的数据结构,即队列,用来在生产者和消费者线程之间的信息传递

基本FIFO队列

class Queue.Queue(maxsize=0)

FIFO即First in First Out,先进先出。Queue提供了一个基本的FIFO容器,使用方法很简单,maxsize是个整数,指明了队列中能存放的数据个数的上限。一旦达到上限,插入会导致阻塞,直到队列中的数据被消费掉。如果maxsize小于或者等于0,队列大小没有限制。

举个例子:

 1 import Queue
 2
 3 q = Queue.Queue()
 4
 5 for i in range(5):
 6     q.put(i)
 7
 8 while not q.empty():
 9     print q.get()
10
11 输出结果:
12 0
13 1
14 2
15 3
16 4

LIFO队列

class Queue.LifoQueue(maxsize=0)

LIFO即Last in First Out,后进先出。与栈的类似,使用也很简单,maxsize用法同上

举个例子:

 1 import Queue
 2
 3 q = Queue.LifoQueue()
 4
 5 for i in range(5):
 6     q.put(i)
 7
 8 while not q.empty():
 9     print q.get()
10
11 输出:
12
13 4
14 3
15 2
16 1
17 0

可以看到仅仅是将Queue.Quenu类替换为Queue.LifiQueue类

优先级队列

class Queue.PriorityQueue(maxsize=0)

构造一个优先队列。maxsize用法同上。

import Queue
import threading

class Job(object):
    def __init__(self, priority, description):
        self.priority = priority
        self.description = description
        print ‘Job:‘,description
        return
    def __cmp__(self, other):
        return cmp(self.priority, other.priority)

q = Queue.PriorityQueue()

q.put(Job(3, ‘level 3 job‘))
q.put(Job(10, ‘level 10 job‘))
q.put(Job(1, ‘level 1 job‘))

def process_job(q):
    while True:
        next_job = q.get()
        print ‘for:‘, next_job.description
        q.task_done()

workers = [threading.Thread(target=process_job, args=(q,)),
        threading.Thread(target=process_job, args=(q,))
        ]

for w in workers:
    w.setDaemon(True)
    w.start()

q.join()

输出结果:

Job: level 3 job
Job: level 10 job
Job: level 1 job
for: level 1 job
for: level 3 job
for: job: level 10 job

一些常用方法

task_done()

意味着之前入队的一个任务已经完成。由队列的消费者线程调用。每一个get()调用得到一个任务,接下来的task_done()调用告诉队列该任务已经处理完毕。

如果当前一个join()正在阻塞,它将在队列中的所有任务都处理完时恢复执行(即每一个由put()调用入队的任务都有一个对应的task_done()调用)。

join()

阻塞调用线程,直到队列中的所有任务被处理掉。

只要有数据被加入队列,未完成的任务数就会增加。当消费者线程调用task_done()(意味着有消费者取得任务并完成任务),未完成的任务数就会减少。当未完成的任务数降到0,join()解除阻塞。

put(item[, block[, timeout]])

将item放入队列中。

  1. 如果可选的参数block为True且timeout为空对象(默认的情况,阻塞调用,无超时)。
  2. 如果timeout是个正整数,阻塞调用进程最多timeout秒,如果一直无空空间可用,抛出Full异常(带超时的阻塞调用)。
  3. 如果block为False,如果有空闲空间可用将数据放入队列,否则立即抛出Full异常

其非阻塞版本为put_nowait等同于put(item, False)

get([block[, timeout]])

从队列中移除并返回一个数据。block跟timeout参数同put方法

其非阻塞方法为`get_nowait()`相当与get(False)

empty()

如果队列为空,返回True,反之返回False

==================================================================================================

创建一个“队列”对象

import Queue
myqueue = Queue.Queue(maxsize = 10)

Queue.Queue类即是一个队列的同步实现。队列长度可为无限或者有限。可通过Queue的构造函数的可选参数maxsize来设定队列长度。如果maxsize小于1就表示队列长度无限。

将一个值放入队列中

myqueue.put(10)

调用队列对象的put()方法在队尾插入一个项目。put()有两个参数,第一个item为必需的,为插入项目的值;第二个block为可选参数,默认为1。如果队列当前为空且block为1,put()方法就使调用线程暂停,直到空出一个数据单元。如果block为0,put方法将引发Full异常。

PS:block参数为True,相当于队伍排满了,就在旁边等着,腾出位置再插进去;block为False,相当于队伍排满了,没位置了,直接投诉,不他妈跟你墨迹

将一个值从队列中取出

myqueue.get()

调用队列对象的get()方法从队头删除并返回一个项目。可选参数为block,默认为True。如果队列为空且block为True,get()就使调用线程暂停,直至有项目可用。如果队列为空且block为False,队列将引发Empty异常。

PS:block参数为True,相当于锅里没吃的了,就在旁边等着上新菜,上了新菜再直接端走;block为False,相当于锅里没货了,没耐心等新菜上锅,直接掀锅砸灶,去你妈的

python queue模块有三种队列:
1、python queue模块的FIFO队列先进先出。
2、LIFO类似于堆。即先进后出。
3、还有一种是优先级队列级别越低越先出来。

针对这三种队列分别有三个构造函数:
1、class Queue.Queue(maxsize) FIFO 
2、class Queue.LifoQueue(maxsize) LIFO 
3、class Queue.PriorityQueue(maxsize) 优先级队列

介绍一下此包中的常用方法:

Queue.qsize() 返回队列的大小 
Queue.empty() 如果队列为空,返回True,反之False 
Queue.full() 如果队列满了,返回True,反之False
Queue.full 与 maxsize 大小对应 
Queue.get([block[, timeout]])获取队列,timeout等待时间 
Queue.get_nowait() 相当Queue.get(False)
非阻塞 Queue.put(item) 写入队列,timeout等待时间 
Queue.put_nowait(item) 相当Queue.put(item, False)
Queue.task_done() 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号
Queue.join() 实际上意味着等到队列为空,再执行别的操作

一些需要注意的地方:

1. 阻塞模式

import Queue

q = Queue.Queue(10)

......
       for i in range(10):
               q.put(‘A‘)
               time.sleep(0.5)

这是一段极其简单的代码(另有两个线程也在操作队列q),我期望每隔0.5秒写一个‘A‘到队列中,但总是不能如愿:间隔时间有时会远远超过0.5秒。原来,Queue.put()默认有 block = True 和 timeou 两个参数。当  block = True 时,写入是阻塞式的,阻塞时间由 timeou  确定。当队列q被(其他线程)写满后,这段代码就会阻塞,直至其他线程取走数据。Queue.put()方法加上 block=False 的参数,即可解决这个隐蔽的问题。但要注意,非阻塞方式写队列,当队列满时会抛出 exception Queue.Full 的异常。

PS:如果没能及时put,说明队伍满了,还他妈在排队呢,且等着

2. 无法捕获 exception Queue.Empty 的异常

while True:
                ......
                try:
                        data = q.get()
                except Queue.Empty:
                        break

我的本意是用队列为空时,退出循环,但实际运行起来,却陷入了死循环。这个问题和上面有点类似:Queue.get()默认的也是阻塞方式读取数据,队列为空时,不会抛出 except Queue.Empty ,而是进入阻塞直至超时。 加上block=False 的参数,问题迎刃而解。

PS:老子还在排队等上菜,你抛锤子的异常,有本事直接砸锅掀灶台,否则乖乖一边站着等

时间: 2025-01-17 22:01:09

(转)有关Queue队列的相关文章

Stack集合 Queue队列集合 Hashtable哈希表

Stack集合 干草堆集合 栈集合 栈;stack,先进后出,一个一个赋值,一个一个取值,安装顺序来. 属性和方法 实例化 初始化 Stack st = new Stack(); 添加元素 1 个数 2 Console.WriteLine(st.Count); 3 只要使用一次pop方法,就会从最后一个元素开始排除 弹出 4 Console.WriteLine(st.Pop()); 5 Console.WriteLine(st.Count); 6 只想查看不弹出 7 Console.WriteL

python2.0_s12_day9之day8遗留知识(queue队列&生产者消费者模型)

4.线程 1.语法 2.join 3.线程锁之Lock\Rlock\信号量 4.将线程变为守护进程 5.Event事件 * 6.queue队列 * 7.生产者消费者模型 4.6 queue队列 queue非常有用,当信息必须安全的在多个线程之间进行数据交换的时候就应该想到queue 所以,queue它能保证数据被安全的在多个线程之间进行交换,那他就是天生的线程安全. queue有那么几种: class queue.Queue(maxsize=0) # 先入先出 class queue.LifoQ

python threading模块使用 以及python多线程操作的实践(使用Queue队列模块)

今天花了近乎一天的时间研究python关于多线程的问题,查看了大量源码 自己也实践了一个生产消费者模型,所以把一天的收获总结一下. 由于GIL(Global Interpreter Lock)锁的关系,纯的python代码处理一般逻辑的确无法活动性能上的极大提升,但是在处理需要等待外部资源返回或多用户的应用程序中,多线程仍然可以作为一个比较好的工具来进行使用. python提供了两个模块thread和threading 来支持python的多线程操作.通俗的讲一般现在我们只使用threading

C#基础---Queue(队列)的应用

   Queue队列,特性先进先出. 在一些项目中我们会遇到对一些数据的Check,如果数据不符合条件将会把不通过的信息返回到界面.但是对于有的数据可能会Check很多条件,如果一个数据一旦很多条件不通过,那么全部错误返回到界面,可能会让用户束手无策.我们有时候往往在一个流程中.只将Check流程中第一个不符合条件的错误提示给用户,让用户修改.首先我们就想到了队列,通过队列将所有的Check方法注册,然后依次出列.执行. Demo背景: XX公司招人,对员工的居住地点,姓氏,年龄都有要求. 一.

第19章 queue队列容器

/* 第19章 queue队列容器 19.1 queue技术原理 19.2 queue应用基础 19.3 本章小结 */ // 第19章 queue队列容器 // 19.1 queue技术原理 // 19.2 queue应用基础 ------------------------------------------------------------------------------------------- //273 #include <queue> #include <iostre

#queue队列 #生产者消费者模型

1 #queue队列 #生产者消费者模型 2 3 #queue队列 #有顺序的容器 4 #程序解耦 5 #提高运行效率 6 7 #class queue.Queue(maxsize=0) #先入先出 8 #class queue.LifoQueue(maxsize=0)最后在第一 9 #class queue.PriorityQueue(maxsize=0) #存储数据时可设置优先级的队列#VIP客户 10 11 #Queue.qsize() 12 #Queue.empty() #return

python学习笔记-Day11 (线程、进程、queue队列、生产消费模型、携程)

线程使用 ###方式一 import threading def f1(arg): print(arg) t = threading.Thread(target=f1, args=(123,)) t.start() # start会调用run方法执行 # t是threading.Thread类的一个对象 # t.start()就会以线程的方式执行函数,可以使用pycharm ctrl选择start方法 # 找到Thread类的start方法,在start方法的注释中就已经写明,会去调用run()

13 join 线程锁之Lock\Rlock\信号量 将线程变为守护进程 Event事件  queue队列 生产者消费者模型 Queue队列 开发一个线程池

本节内容 操作系统发展史介绍 进程.与线程区别 python GIL全局解释器锁 线程 语法 join 线程锁之Lock\Rlock\信号量 将线程变为守护进程 Event事件 queue队列 生产者消费者模型 Queue队列 开发一个线程池 进程 语法 进程间通讯 进程池 操作系统发展史 手工操作(无操作系统) 1946年第一台计算机诞生--20世纪50年代中期,还未出现操作系统,计算机工作采用手工操作方式. 手工操作程序员将对应于程序和数据的已穿孔的纸带(或卡片)装入输入机,然后启动输入机把

[笔记]python数据结构之线性表:linkedlist链表,stack栈,queue队列

python数据结构之线性表 python内置了很多高级数据结构,list,dict,tuple,string,set等,在使用的时候十分舒心.但是,如果从一个初学者的角度利用python学习数据结构时,这些高级的数据结构可能给我们以迷惑. 比如,使用list实现queue的时候,入队操作append()时间复杂度可以认为是O(1),但是,出队操作pop(0)的时间复杂度就是O(n). 如果是想利用python学学数据结构的话,我觉得还是自己实现一遍基本的数据结构为好. 1.链表 在这里,我想使

atitit. java queue 队列体系and自定义基于数据库的队列总结o7t

atitit. java queue 队列体系and自定义基于数据库的队列总结o7t 1. 阻塞队列和非阻塞队列 1 2. java.util.Queue接口, 1 3. ConcurrentLinkedQueue 2 4. BlockingQueue阻塞队列 2 4.1. 1. ArrayBlockingQueue 3 4.2. 2. LinkedBlockingQueue 3 4.3. 3. DelayQueue 3 4.4. 4. PriorityBlockingQueue 3 4.5.