现在我先把没有优化的算法写出了,稍后再琢磨琢磨优化算法
KMP算法
时间限制:1000ms
单点时限:1000ms
内存限制:256MB
描述
小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在编程的学习道路上一同前进。
这一天,他们遇到了一只河蟹,于是河蟹就向小Hi和小Ho提出了那个经典的问题:“小Hi和小Ho,你们能不能够判断一段文字(原串)里面是不是存在那么一些……特殊……的文字(模式串)?”
小Hi和小Ho仔细思考了一下,觉得只能想到很简单的做法,但是又觉得既然河蟹先生这么说了,就肯定不会这么容易的让他们回答了,于是他们只能说道:“抱歉,河蟹先生,我们只能想到时间复杂度为(文本长度 * 特殊文字总长度)的方法,即对于每个模式串分开判断,然后依次枚举起始位置并检查是否能够匹配,但是这不是您想要的方法是吧?”
河蟹点了点头,说道:”看来你们的水平还有待提高,这样吧,如果我说只有一个特殊文字,你能不能做到呢?“
小Ho这时候还有点晕晕乎乎的,但是小Hi很快开口道:”我知道!这就是一个很经典的模式匹配问题!可以使用KMP算法进行求解!“
河蟹满意的点了点头,对小Hi说道:”既然你知道就好办了,你去把小Ho教会,下周我有重要的任务交给你们!“
”保证完成任务!”小Hi点头道。
提示一:KMP的思路
提示二:NEXT数组的使用
提示三:如何求解NEXT数组
输入
第一行一个整数N,表示测试数据组数。
接下来的N*2行,每两行表示一个测试数据。在每一个测试数据中,第一行为模式串,由不超过10^4个大写字母组成,第二行为原串,由不超过10^6个大写字母组成。
其中N<=20
输出
对于每一个测试数据,按照它们在输入中出现的顺序输出一行Ans,表示模式串在原串中出现的次数。
样例输入
5
HA
HAHAHA
WQN
WQN
ADA
ADADADA
BABABB
BABABABABABABABABB
DAD
ADDAADAADDAAADAAD
样例输出
3
1
3
1
0
import java.util.Scanner;
public class KMPAlgorithm {
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
int n=in.nextInt();
while (n--!=0) {
String A=in.next();
int a=A.length();
String B=in.next();
int b=B.length();
int count=0;
for (int i = 0; i <=b-a; i++) {
String C=B.substring(i, i+a);
if (A.equals(C)) {
count++;
}
}
System.out.println(count);
}
in.close();
}
}