列表解析
在需要改变列表而不是需要新建某列表时,可以使用列表解析。列表解析表达式为:
[expr for iter_var in iterable] [expr for iter_var in iterable if cond_expr]
第一种语法:首先迭代iterable里所有内容,每一次迭代,都把iterable里相应内容放到iter_var中,再在表达式中应用该iter_var的内容,最后用表达式的计算值生成一个列表。
第二种语法:加入了判断语句,只有满足条件的内容才把iterable里相应内容放到iter_var中,再在表达式中应用该iter_var的内容,最后用表达式的计算值生成一个列表。
举例如下:
代码如下:
>>> L= [(x+1,y+1) for x in range(3) for y in range(5)] >>> L [(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5)] >>> N=[x+10 for x in range(10) if x>5] >>> N [16, 17, 18, 19]
生成器表达式
生成器表达式是在python2.4中引入的,当序列过长, 而每次只需要获取一个元素时,应当考虑使用生成器表达式而不是列表解析。生成器表达式的语法和列表解析一样,只不过生成器表达式是被()括起来的,而不是[],如下:
(expr for iter_var in iterable)
(expr for iter_var in iterable if cond_expr)
例:
代码如下:
>>> L= (i + 1 for i in range(10) if i % 2) >>> L <generator object <genexpr> at 0xb749a52c> >>> L1=[] >>> for i in L: ... L1.append(i) ... >>> L1 [2, 4, 6, 8, 10]
生成器表达式并不真正创建数字列表, 而是返回一个生成器,这个生成器在每次计算出一个条目后,把这个条目“产生”(yield)出来。 生成器表达式使用了“惰性计算”(lazy evaluation,也有翻译为“延迟求值”,我以为这种按需调用call by need的方式翻译为惰性更好一些),只有在检索时才被赋值(evaluated),所以在列表比较长的情况下使用内存上更有效。A generator object in python is something like a lazy list. The elements are only evaluated as soon as you iterate over them.
一些说明:
1. 当需要只是执行一个循环的时候尽量使用循环而不是列表解析,这样更符合python提倡的直观性。
代码如下:
for item in sequence: process(item)
2. 当有内建的操作或者类型能够以更直接的方式实现的,不要使用列表解析。
例如复制一个列表时,使用:L1=list(L)即可,不必使用:
代码如下:
L1=[x for x in L]
3. 如果需要对每个元素都调用并且返回结果时,应使用L1=map(f,L), 而不是 L1=[f(x) for x in L]