时间: 2024-10-10 22:24:31
BP人工神经网络原理(转载)
BP人工神经网络原理(转载)的相关文章
用BP人工神经网络识别手写数字
http://wenku.baidu.com/link?url=HQ-5tZCXBQ3uwPZQECHkMCtursKIpglboBHq416N-q2WZupkNNH3Gv4vtEHyPULezDb50ZcKor41PEikwv5TfTqwrsQ4-9wmH06L7bYD04u 用BP人工神经网络识别手写数字 yzw20091201上传于2013-01-31|暂无评价|356人阅读|13次下载|暂无简介|举报文档 在手机打开 赖勇浩( http://laiyonghao.com ) 这是我读工
[转]BP人工神经网络的介绍与实现
原文地址:http://www.cnblogs.com/luxiaoxun/archive/2012/12/10/2811309.html 神经网络概念与适合领域 神经网络最早的研究是 40 年代心理学家 Mcculloch 和数学家 Pitts 合作提出的 ,他们提出的MP模型拉开了神经网络研究的序幕. 神经网络的发展大致经过 3 个阶段:1947-1969 年为初期,在这期间科学家们提出了许多神经元模型和学习规则,如 MP 模型.HEBB 学习规则和感知器等:60 年代末期至 80 年代中期
[转]BP人工神经网络的C++实现
原文地址:http://blog.csdn.net/luxiaoxun/article/details/7649945 分类: Research(3) 版权声明:本文为博主原创文章,未经博主允许不得转载. BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一.BP网络能学习和存贮大量的输入输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.它的
人工神经网络简介
本文主要对人工神经网络基础进行了描述,主要包括人工神经网络的概念.发展.特点.结构.模型. 本文是个科普文,来自网络资料的整理. 一. 人工神经网络的概念 人工神经网络(Artificial Neural Network,ANN)简称神经网络(NN),是基于生物学中神经网络的基本原理,在理解和抽象了人脑结构和外界刺激响应机制后,以网络拓扑知识为理论基础,模拟人脑的神经系统对复杂信息的处理机制的一种数学模型.该模型以并行分布的处理能力.高容错性.智能化和自学习等能力为特征,
BP神经网络原理及C++实战
前一段时间做了一个数字识别的小系统,基于BP神经网络算法的,用MFC做的交互.在实现过程中也试着去找一些源码,总体上来讲,这些源码的可移植性都不好,多数将交互部分和核心算法代码杂糅在一起,这样不仅代码阅读困难,而且重要的是核心算法不具备可移植性.设计模式,设计模式的重要性啊!于是自己将BP神经网络的核心算法用标准C++实现,这样可移植性就有保证的,然后在核心算法上实现基于不同GUI库的交互(MFC,QT)是能很快的搭建好系统的.下面边介绍BP算法的原理(请看<数字图像处理与机器视觉>非常适合做
人工神经网络基础概念、原理知识(补)
一提到人工神经网络应当想到三个基础的知识点:一是神经元模型:二是神经网络结构:三是学习算法.神经网络的种类多种多样,但其分类依据逃不出上面上个基础知识点.所以在学习中如果能够仅仅把握住以上三个线索,就能触类旁通,拥有一个非常好的视角看待神经网络.今天就对这三个基础知识点进行总结,达到指导神经网络学习以及深化对神经网络的理解的目的. 一.神经元模型 人工神经网络是在现代神经生物学研究基础上提出的模拟生物过程 ,反映人脑某些特性的一种计算结构.它不是人脑神经系统的真实描写,而只是它的某种抽象.简化和
deep learning(1)BP神经网络原理与练习
具体原理参考如下讲义: 1.神经网络 2.反向传导 3.梯度检验与高级优化 看完材料1和2就可以梳理清楚bp神经网络的基本工作原理,下面通过一个C语言实现的程序来练习这个算法 1 //Backpropagation, 25x25x8 units, binary sigmoid function network 2 //Written by Thomas Riga, University of Genoa, Italy 3 //[email protected] 4 5 #include <ios
人工神经网络算法原理和应用
人工神经网络 什么是人工神经网络? 我们先从他的结构谈起 说明: 通常一个神经网络由一个input layer,多个hidden layer和一个output layer构成.图中圆圈可以视为一个神经元(又可以称为感知器)设计神经网络的重要工作是设计hidden layer,及神经元之间的权重添加少量隐层获得浅层神经网络SNN:隐层很多时就是深层神经网络DNN 原文地址:https://www.cnblogs.com/wqbin/p/10242471.html
人工神经网络--ANN
神经网络是一门重要的机器学习技术.它是目前最为火热的研究方向--深度学习的基础.学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术. 本文以一种简单的,循序的方式讲解神经网络.适合对神经网络了解不多的同学.本文对阅读没有一定的前提要求,但是懂一些机器学习基础会更好地帮助理解本文. 神经网络是一种模拟人脑的神经网络以期能够实现类人工智能的机器学习技术.人脑中的神经网络是一个非常复杂的组织.成人的大脑中估计有1000亿个神经元之多. 图1 人脑神经网络 那么机