Codeforces Gym10008E Harmonious Matrices(高斯消元)

【题目链接】 http://codeforces.com/gym/100008/

【题目大意】

  给出 一个n*m的矩阵,要求用0和1填满,使得每个位置和周围四格相加为偶数,要求1的数目尽量多。

【题解】

  首先,如果确定第一排的填法,要求最终结果为偶数,那么就能推出第二排的填法,同理可以依次推出整个矩阵,因此我们设置第一排填法为未知数,可以将方程推到最后一排,因为n+1排填的数字一定是0,这样子就可以得到m个方程。高斯消元求解即可,因为在要求1最多,因此自由变元尽量设为1.

【代码】

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
#define rep(i,n) for(int i=1;i<=n;i++)
const int N=50;
int T,n,m,p[N][N];
long long f[N][N];
void Gauss(int n,int m) {
    int i,j,k,h,w;
    for(i=j=1;j<m;j++,w=0){
        for(k=i;k<=n;k++)if(p[k][j])w=k;
        if(w){
            for(k=j;k<=m;k++)swap(p[i][k],p[w][k]);
            for(k=i+1;k<=n;k++)
            if(p[k][j]){
                for(h=j;h<=m;h++)p[k][h]^=p[i][h];
            }i++;
        }if(i>n)break ;
    }for(j=1;j<m;j++)f[1][j]=1;
    for(j=i-1;j;j--){
        for(k=1;k<m;k++)if(p[j][k])break ;
        f[1][k]=f[j][m];
        for(h=k+1;h<m;h++)if(f[1][h]&&p[j][h])f[1][k]^=1;
    }
}
int main(){
    scanf("%d",&T);
    while(T--){
        scanf("%d%d",&n,&m);
        memset(p,0,sizeof(p));
        memset(f,0,sizeof(f));
        rep(i,m)f[1][i]=1LL<<i;
        rep(i,n)rep(j,m)f[i+1][j]=f[i][j-1]^f[i][j]^f[i][j+1]^f[i-1][j];
        rep(i,m)rep(j,m)if(f[n+1][i]&(1LL<<j))p[i][j]=1;
        Gauss(m,m+1);
        for(int i=2;i<=n;i++)rep(j,m)f[i][j]=f[i-1][j-1]^f[i-1][j]^f[i-1][j+1]^f[i-2][j];
        rep(i,n){rep(j,m-1)printf("%lld ",f[i][j]);printf("%lld\n",f[i][m]);}
    }return 0;
}

  

时间: 2024-10-06 23:05:45

Codeforces Gym10008E Harmonious Matrices(高斯消元)的相关文章

poj_1222_高斯消元

第一次学习使用高斯消元,将灯板化为线性方程组,进行求解. /*######################################################################### # File Name: poj_1222.cpp # Author: CaoLei # Created Time: 2015/7/20 15:48:04 ###################################################################

HDU 4870 Rating(高斯消元)

HDU 4870 Rating 题目链接 题意:一个人注册两个账号,初始rating都是0,他每次拿低分的那个号去打比赛,赢了加50分,输了扣100分,胜率为p,他会打到直到一个号有1000分为止,问比赛场次的期望 思路:f(i, j)表示i >= j,第一个号i分,第二个号j分时候,达到目标的期望,那么可以列出转移为f(i, j) = p f(i', j') + (1 - p) f(i'' + j'') + 1 f(i', j')对应的是赢了加分的状态,f(i'', j'')对应输的扣分的状态

【BZOJ 4171】 4171: Rhl的游戏 (高斯消元)

4171: Rhl的游戏 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 74  Solved: 33[Submit][Status][Discuss] Description RHL最近迷上一个小游戏:Flip it.游戏的规则很简单,在一个N*M的格子上,有一些格子是黑色,有一些是白色 .每选择一个格子按一次,格子以及周围边相邻的格子都会翻转颜色(边相邻指至少与该格子有一条公共边的格子 ),黑变白,白变黑.RHL希望把所有格子都变成白色的.不幸

POJ 1830 开关问题 高斯消元,自由变量个数

http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被操作一次,记得a[i][i] = 1是必须的,因为开关i操作一次,本身肯定会变化一次. 所以有n个开关,就有n条方程, 每个开关的操作次数总和是:a[i][1] + a[i][2] + ... + a[i][n] 那么sum % 2就代表它的状态,需要和(en[i] - be[i] + 2) % 2

BZOJ 3105: [cqoi2013]新Nim游戏 [高斯消元XOR 线性基]

以后我也要用传送门! 题意:一些数,选择一个权值最大的异或和不为0的集合 终于有点明白线性基是什么了...等会再整理 求一个权值最大的线性无关子集 线性无关子集满足拟阵的性质,贪心选择权值最大的,用高斯消元判断是否和已选择的线性相关 每一位记录pivot[i]为i用到的行 枚举要加入的数字的每一个二进制为1的位,如果有pivot[i]那么就异或一下(消元),否则pivot[i]=这个数并退出 如果最后异或成0了就说明线性相关... #include <iostream> #include &l

[bzoj1013][JSOI2008]球形空间产生器sphere-题解[高斯消元]

Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. Input 第一行是一个整数n(1<=N=10).接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标.每一个实数精确到小数点后6位,且其绝对值都不超过20000. Output 有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开.每个实数精确到

[spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)

In some countries building highways takes a lot of time... Maybe that's because there are many possiblities to construct a network of highways and engineers can't make up their minds which one to choose. Suppose we have a list of cities that can be c

UVA 10828 Back to Kernighan-Ritchie(高斯消元)

高斯消元求概率 对于非起点,期望x[i] = ∑x[j] / deg[j] #include<cstdio> #include<iostream> #include<cstdlib> #include<cstring> #include<string> #include<algorithm> #include<map> #include<queue> #include<vector> #includ

【BZOJ-1923】外星千足虫 高斯消元 + xor方程组

1923: [Sdoi2010]外星千足虫 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 766  Solved: 485[Submit][Status][Discuss] Description Input 第一行是两个正整数 N, M. 接下来 M行,按顺序给出 Charles 这M次使用“点足机”的统计结果.每行包含一个“01”串和一个数字,用一个空格隔开.“01”串按位依次表示每只虫子是否被放入机器:如果第 i 个字符是“0”则代表编号为