[转载] 从Handler.post(Runnable r) ,Handler.sendEmptyMessage()梳理Android的消息机制(以及handler的内存泄露)

Handler

每个初学Android开发的都绕不开Handler这个“坎”,为什么说是个坎呢,首先这是Android架构的精髓之一,其次大部分人都是知其然却不知其所以然。今天看到Handler.post这个方法之后决定再去翻翻源代码梳理一下Handler的实现机制。

异步更新UI

先来一个必背口诀“主线程不做耗时操作,子线程不更新UI”,这个规定应该是初学必知的,那要怎么来解决口诀里的问题呢,这时候Handler就出现在我们面前了(AsyncTask也行,不过本质上还是对Handler的封装),来一段经典常用代码(这里忽略内存泄露问题,我们后面再说):

首先在Activity中新建一个handler:

private Handler mHandler = new Handler() {
        @Override
        public void handleMessage(Message msg) {
            super.handleMessage(msg);
            switch (msg.what) {
                case 0:
                    mTestTV.setText("This is handleMessage");//更新UI
                    break;
            }
        }
    };

然后在子线程里发送消息:

new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    Thread.sleep(1000);//在子线程有一段耗时操作,比如请求网络
                    mHandler.sendEmptyMessage(0);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }).start();

至此完成了在子线程的耗时操作完成后在主线程异步更新UI,可是并没有用上标题的post,我们再来看post的版本:

private Handler mHandler;//全局变量
@Override
protected void onCreate(Bundle savedInstanceState) {
    mHandler = new Handler();
    new Thread(new Runnable() {
                @Override
                public void run() {
                    try {
                        Thread.sleep(1000);//在子线程有一段耗时操作,比如请求网络
                        mHandler.post(new Runnable() {
                            @Override
                            public void run() {
                                mTestTV.setText("This is post");//更新UI
                            }
                        });
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }).start();
}

从表面上来看,给post方法传了个Runnable,像是开了个子线程,可是在子线程里并不能更新UI啊,那么问题来了,这是怎么个情况呢?带着这个疑惑,来翻翻Handler的源码:

先来看看普通的sendEmptyMessage是什么样子:

public final boolean sendEmptyMessage(int what)
    {
        return sendEmptyMessageDelayed(what, 0);
    }
public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
        Message msg = Message.obtain();
        msg.what = what;
        return sendMessageDelayed(msg, delayMillis);
    }

将我们传入的参数封装成了一个消息,然后调用sendMessageDelayed:

public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }

再调用sendMessageAtTime:

public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

好了,我们再来看post():

public final boolean post(Runnable r)
    {
       return  sendMessageDelayed(getPostMessage(r), 0);//getPostMessage方法是两种发送消息的不同之处
    }

方法只有一句,内部实现和普通的sendMessage是一样的,但是只有一点不同,那就是 getPostMessage(r) 这个方法:

private static Message getPostMessage(Runnable r) {
        Message m = Message.obtain();
        m.callback = r;
        return m;
    }

这个方法我们发现也是将我们传入的参数封装成了一个消息,只是这次是m.callback = r,刚才是msg.what=what,至于Message的这些属性就不看了

Android消息机制

看到这里,我们只是知道了post和sendMessage原理都是封装成Message,但是还是不清楚Handler的整个机制是什么样子,继续探究下去。

刚才看到那两个方法到最终都调用了sendMessageAtTime

public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

这个方法又调用了 enqueueMessage,看名字应该是把消息加入队列的意思,点进去看下:

private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

mAsynchronous这个异步有关的先不管,继续将参数传给了queue的enqueueMessage方法,至于那个msgtarget的赋值我们后面再看,现在继续进入MessageQueue类的enqueueMessage方法,方法较长,我们看看关键的几行:

Message prev;
for (;;) {
    prev = p;
    p = p.next;
    if (p == null || when < p.when) {
        break;
    }
    if (needWake && p.isAsynchronous()) {
        needWake = false;
    }
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;

果然像方法名说的一样,一个无限循环将消息加入到消息队列中(链表的形式),但是有放就有拿,这个消息怎样把它取出来呢?

翻看MessageQueue的方法,我们找到了next(),代码太长,不赘述,我们知道它是用来把消息取出来的就行了。不过这个方法是在什么地方调用的呢,不是在Handler中,我们找到了Looper这个关键人物,我叫他环形使者,专门负责从消息队列中拿消息,关键代码如下:

for (;;) {
     Message msg = queue.next(); // might block
     ...
     msg.target.dispatchMessage(msg);
     ...
     msg.recycleUnchecked();
}

简单明了,我们看到了我们刚才说的msg.target,刚才在Handler中赋值了msg.target=this,所以我们来看Handler中的dispatchMessage:

public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }
  1. msg的callback不为空,调用handleCallback方法(message.callback.run()
  2. mCallback不为空,调用mCallback.handleMessage(msg)
  3. 最后如果其他都为空,执行Handler自身的 handleMessage(msg) 方法

msg的callback应该已经想到是什么了,就是我们通过Handler.post(Runnable r)传入的Runnable的run方法,这里就要提提Java基础了,直接调用线程的run方法相当于是在一个普通的类调用方法,还是在当前线程执行,并不会开启新的线程。

所以到了这里,我们解决了开始的疑惑,为什么在post中传了个Runnable还是在主线程中可以更新UI

继续看如果msg.callback为空的情况下的mCallback,这个要看看构造方法:

1.
public Handler() {
        this(null, false);
    }
2.
public Handler(Callback callback) {
        this(callback, false);
    }
3.
public Handler(Looper looper) {
        this(looper, null, false);
    }
4.
public Handler(Looper looper, Callback callback) {
        this(looper, callback, false);
    }
5.
public Handler(boolean async) {
        this(null, async);
    }
6.
public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can‘t create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }
7.
public Handler(Looper looper, Callback callback, boolean async) {
        mLooper = looper;
        mQueue = looper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

具体的实现就只有最后两个,已经知道mCallback是怎么来的了,在构造方法中传入就行。

最后如果这两个回调都为空的话就执行Handler自身的handleMessage(msg)方法,也就是我们熟知的新建Handler重写的那个handleMessage方法。

Looper

看到了这里有一个疑惑,那就是我们在新建Handler的时候并没有传入任何参数,也没有哪里显示调用了Looper有关方法,那Looper的创建以及方法调用在哪里呢?其实这些东西Android本身已经帮我们做了,在程序入口ActivityThread的main方法里面我们可以找到:

 public static void main(String[] args) {
    ...
    Looper.prepareMainLooper();
    ...
    Looper.loop();
    ...

总结

已经大概梳理了一下Handler的消息机制,以及post方法和我们常用的sendMessage方法的区别。来总结一下,主要涉及四个类Handler、Message、MessageQueue、Looper

新建Handler,通过sendMessage或者post发送消息,Handler调用sendMessageAtTimeMessage交给MessageQueue



MessageQueue.enqueueMessage方法将Message以链表的形式放入队列中



Looperloop方法循环调用MessageQueue.next()取出消息,并且调用HandlerdispatchMessage来处理消息



dispatchMessage中,分别判断msg.callback、mCallback也就是post方法或者构造方法传入的不为空就执行他们的回调,如果都为空就执行我们最常用重写的handleMessage


最后谈谈handler的内存泄露问题

再来看看我们的新建Handler的代码:

private Handler mHandler = new Handler() {
        @Override
        public void handleMessage(Message msg) {
            ...
        }
    };

当使用内部类(包括匿名类)来创建Handler的时候,Handler对象会隐式地持有Activity的引用。

而Handler通常会伴随着一个耗时的后台线程一起出现,这个后台线程在任务执行完毕后发送消息去更新UI。然而,如果用户在网络请求过程中关闭了Activity,正常情况下,Activity不再被使用,它就有可能在GC检查时被回收掉,但由于这时线程尚未执行完,而该线程持有Handler的引用(不然它怎么发消息给Handler?),这个Handler又持有Activity的引用,就导致该Activity无法被回收(即内存泄露),直到网络请求结束。

另外,如果执行了Handler的postDelayed()方法,那么在设定的delay到达之前,会有一条MessageQueue -> Message -> Handler -> Activity的链,导致你的Activity被持有引用而无法被回收。

解决方法之一,使用弱引用:

static class MyHandler extends Handler {
    WeakReference<Activity > mActivityReference;
    MyHandler(Activity activity) {
        mActivityReference= new WeakReference<Activity>(activity);
    }
    @Override
    public void handleMessage(Message msg) {
        final Activity activity = mActivityReference.get();
        if (activity != null) {
            mImageView.setImageBitmap(mBitmap);
        }
    }
}

转载自:http://blog.csdn.net/ly502541243/article/details/52062179/
时间: 2024-10-10 08:28:14

[转载] 从Handler.post(Runnable r) ,Handler.sendEmptyMessage()梳理Android的消息机制(以及handler的内存泄露)的相关文章

Android的消息机制以及Message/MessageQueue/Handler/Looper

概览 * Message:消息.消息里面可包含简单数据.Object和Bundle,还可以包含一个Runnable(实际上可看做回调). * MessageQueue:消息队列,供Looper线程消费消息. * Looper:用于循环处理Message,一个Thread结合一个Looper来实现消息循环处理.Android App的主线程包含了Looper. * Handler:负责向当前Looper线程发送Message,并实现如何处理消息的回调,回调可放到Callback接口的实现中,也可以

Android消息机制(Handler、MessageQueue、Looper)详细介绍

Android的消息机制其实在android的开发过程中指的也就是Handler的运行机制,这也就引出了android中常见的面试问题: 简述Handler.Looper.MessageQueue的含义,以及它们之间的关系 简述Handler的运行机制 说明Handler.Looper以及Message之间的关系 Handler机制为什么这么重要呢? 我们知道android设备作为一台移动设备,不管是内存或者还是它的性能都会受到一定的限制:过多的使用内存会使内存溢出(OOM):另外一方面,大量的

Android的消息机制Handler详解

Android的消息机制详解 Android的消息机制主要指 Handler 的运行机制,Handler的运行需要底层的MessageQueue 和 Looper 的支撑. MessageQueue:消息队列,它的内部存储了一组消息,以队列的形式对外提供插入和删除的工作,其内部存储结构采用单链表的数据结构来存储消息列表. Looper:可理解为消息循环. 由于MessageQueue只是一个消息存储单元,不能去处理消息,而Looper会以无限循环的形式去查找是否有新的消息,如果有的话就处理,否则

Android消息处理惩罚机制(Handler、Looper、MessageQueue与Message)

Android是消息驱动的,实现消息驱动有几个要素: (1)消息的默示:Message (2)消息队列:MessageQueue (3)消息轮回,用于轮回取出消息进行处理惩罚:Looper (4)消息处理惩罚,消息轮回从消息队列中取出消息后要对消息进行处理惩罚:Handler 日常平凡我们最常应用的就是Message与Handler了,若是应用过HandlerThread或者本身实现类似HandlerThread的器材可能还会接触到Looper,而MessageQueue是Looper内部应用的

android线程消息传递机制——Looper,Handler,Message

android线程消息传递机制——Looper,Handler,Message 在引入这些概念之前,我们先了解一下引入这些机制的背景. 出于性能优化的考虑,Android的UI操作并不是线程安全的(如果你不懂什么是线程安全,可以阅读一下<一起探究多进程与多线程>里的数据安全与可重入),这意味着如果有多个线程同时操作某个UI组件,可能导致线程安全问题.为了解决这个问题,Android制定了一条简单的规则:只允许UI线程修改Activity里的UI组件.这个UI线程也通常被我们称为主线程. 在此引

【原创】源码角度分析Android的消息机制系列(六)——Handler的工作原理

ι 版权声明:本文为博主原创文章,未经博主允许不得转载. 先看Handler的定义: /** * A Handler allows you to send and process {@link Message} and Runnable * objects associated with a thread's {@link MessageQueue}. Each Handler * instance is associated with a single thread and that thre

[Android] 异步消息处理机制(Handler 、 Looper 、MessageQueue)源码解析

1.Handler的由来 当程序第一次启动的时候,Android会同时启动一条主线程( Main Thread)来负责处理与UI相关的事件,我们叫做UI线程. Android的UI操作并不是线程安全的(出于性能优化考虑),意味着如果多个线程并发操作UI线程,可能导致线程安全问题. 为了解决Android应用多线程问题-Android平台只允许UI线程修改Activity里的UI组建,就会导致新启动的线程无法改变界面组建的属性值. 简单的说:当主线程队列处理一个消息超过5秒,android 就会抛

Android异步消息处理机制(1)Handler基本使用

Android UI是线程不安全的,如果在子线程中尝试进行UI操作,程序就有可能会崩溃.解决的方案应该是创建一个Message对象,然后借助Handler发送出去,之后在Handler的handleMessage()方法中获得刚才发送的Message对象,然后在这里进行UI操作就不会再出现崩溃了. 这种处理方式被称为异步消息处理线程.简单的说就是在子线程中实现更新UI操作. Handler基本使用 关于Handler的使用包括两种: 从子线程(worker线程)中向主线程(UI线程)发送消息,在

Android的消息处理机制——Looper,Handler和Message浅析

题外话: 说来有些惭愧,对于这三者的初步认识居然是在背面试题的时候.那个时候自己接触Android的时间还不长,学习的书籍也就是比较适合入门的<疯狂Android讲义>,当然在学到Handler这一部分的时候,书中也是有提到一些简单示例,后来在工作中需要用到这个MessageQueue的时候才开始真正琢磨了一下这三者的联系.如果想要对这三者好好理解一番,个人还是比较推荐<深入理解Android卷Ⅰ>.以下对这三者之间的恩怨纠葛的介绍和分析也是参考这本书的相关章节,算是一篇读书笔记吧