【转】四大机器学习降维算法:PCA、LDA、LLE、Laplacian Eigenmaps

最近在找降维的解决方案中,发现了下面的思路,后面可以按照这思路进行尝试下:

链接:http://www.36dsj.com/archives/26723

引言

机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式。 y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的)。f可能是显式的或隐式的、线性的或非线性的。

目前大部分降维算法处理向量表达的数据,也有一些降维算法处理高阶张量表达的数据。之所以使用降维后的数据表示是因为在原始的高维空间中,包含有冗余信息以及噪音信息,在实际应用例如图像识别中造成了误差,降低了准确率;而通过降维,我们希望减少冗余信息所造成的误差,提高识别(或其他应用)的精度。又或者希望通过降维算法来寻找数据内部的本质结构特征。

在很多算法中,降维算法成为了数据预处理的一部分,如PCA。事实上,有一些算法如果没有降维预处理,其实是很难得到很好的效果的。

主成分分析算法(PCA)

Principal Component Analysis(PCA)是最常用的线性降维方法,它的目标是通过某种线性投影,将高维的数据映射到低维的空间中表示,并期望在所投影的维度上数据的方差最大,以此使用较少的数据维度,同时保留住较多的原数据点的特性。

通俗的理解,如果把所有的点都映射到一起,那么几乎所有的信息(如点和点之间的距离关系)都丢失了,而如果映射后方差尽可能的大,那么数据点则会分散开来,以此来保留更多的信息。可以证明,PCA是丢失原始数据信息最少的一种线性降维方式。(实际上就是最接近原始数据,但是PCA并不试图去探索数据内在结构)

设n维向量w为目标子空间的一个坐标轴方向(称为映射向量),最大化数据映射后的方差,有:

其中m是数据实例的个数, xi是数据实例i的向量表达, x拔是所有数据实例的平均向量。定义W为包含所有映射向量为列向量的矩阵,经过线性代数变换,可以得到如下优化目标函数:

其中tr表示矩阵的迹,

A是数据协方差矩阵。

容易得到最优的W是由数据协方差矩阵前k个最大的特征值对应的特征向量作为列向量构成的。这些特征向量形成一组正交基并且最好地保留了数据中的信息。

PCA的输出就是Y = W‘X,由X的原始维度降低到了k维。

PCA追求的是在降维之后能够最大化保持数据的内在信息,并通过衡量在投影方向上的数据方差的大小来衡量该方向的重要性。但是这样投影以后对数据的区分作用并不大,反而可能使得数据点揉杂在一起无法区分。这也是PCA存在的最大一个问题,这导致使用PCA在很多情况下的分类效果并不好。具体可以看下图所示,若使用PCA将数据点投影至一维空间上时,PCA会选择2轴,这使得原本很容易区分的两簇点被揉杂在一起变得无法区分;而这时若选择1轴将会得到很好的区分结果。

Discriminant Analysis所追求的目标与PCA不同,不是希望保持数据最多的信息,而是希望数据在降维后能够很容易地被区分开来。后面会介绍LDA的方法,是另一种常见的线性降维方法。另外一些非线性的降维方法利用数据点的局部性质,也可以做到比较好地区分结果,例如LLE,Laplacian Eigenmap等。以后会介绍。

LDA

Linear Discriminant Analysis (也有叫做Fisher Linear Discriminant)是一种有监督的(supervised)线性降维算法。与PCA保持数据信息不同,LDA是为了使得降维后的数据点尽可能地容易被区分!

假设原始数据表示为X,(m*n矩阵,m是维度,n是sample的数量)

既然是线性的,那么就是希望找到映射向量a, 使得 a‘X后的数据点能够保持以下两种性质:

1、同类的数据点尽可能的接近(within class)

2、不同类的数据点尽可能的分开(between class)

所以呢还是上次PCA用的这张图,如果图中两堆点是两类的话,那么我们就希望他们能够投影到轴1去(PCA结果为轴2),这样在一维空间中也是很容易区分的。

接下来是推导,因为这里写公式很不方便,我就引用Deng Cai老师的一个ppt中的一小段图片了:

思路还是非常清楚的,目标函数就是最后一行J(a),μ(一飘)就是映射后的中心用来评估类间距,s(一瓢)就是映射后的点与中心的距离之和用来评估类内距。J(a)正好就是从上述两个性质演化出来的。

因此两类情况下:

加上a’a=1的条件(类似于PCA)

可以拓展成多类:

以上公式推导可以具体参考pattern classification书中的相应章节,讲fisher discirminant的

OK,计算映射向量a就是求最大特征向量,也可以是前几个最大特征向量组成矩阵A=[a1,a2,….ak]之后,就可以对新来的点进行降维了:y = A’X(线性的一个好处就是计算方便!)

可以发现,LDA最后也是转化成为一个求矩阵特征向量的问题,和PCA很像,事实上很多其他的算法也是归结于这一类,一般称之为谱(spectral)方法。

线性降维算法我想最重要的就是PCA和LDA了,后面还会介绍一些非线性的方法。

局部线性嵌入(LLE)

Locally linear embedding(LLE)是一种非线性降维算法,它能够使降维后的数据较好地保持原有流形结构。LLE可以说是流形学习方法最经典的工作之一。很多后续的流形学习、降维方法都与LLE有密切联系。

见图1,使用LLE将三维数据(b)映射到二维(c)之后,映射后的数据仍能保持原有的数据流形(红色的点互相接近,蓝色的也互相接近),说明LLE有效地保持了数据原有的流行结构。

但是LLE在有些情况下也并不适用,如果数据分布在整个封闭的球面上,LLE则不能将它映射到二维空间,且不能保持原有的数据流形。那么我们在处理数据中,首先假设数据不是分布在闭合的球面或者椭球面上。

图1 LLE降维算法使用实例

LLE算法认为每一个数据点都可以由其近邻点的线性加权组合构造得到。算法的主要步骤分为三步:(1)寻找每个样本点的k个近邻点;(2)由每个样本点的近邻点计算出该样本点的局部重建权值矩阵;(3)由该样本点的局部重建权值矩阵和其近邻点计算出该样本点的输出值。具体的算法流程如图2所示:

图 2 LLE算法步骤

Laplacian Eigenmaps 拉普拉斯特征映射

继续写一点经典的降维算法,前面介绍了PCA,LDA,LLE,这里讲一讲Laplacian Eigenmaps。其实不是说每一个算法都比前面的好,而是每一个算法都是从不同角度去看问题,因此解决问题的思路是不一样的。这些降维算法的思想都很简单,却在有些方面很有效。这些方法事实上是后面一些新的算法的思路来源。

Laplacian Eigenmaps[1] 看问题的角度和LLE有些相似,也是用局部的角度去构建数据之间的关系。

它的直观思想是希望相互间有关系的点(在图中相连的点)在降维后的空间中尽可能的靠近。Laplacian Eigenmaps可以反映出数据内在的流形结构。

使用时算法具体步骤为:

步骤1:构建图

使用某一种方法来将所有的点构建成一个图,例如使用KNN算法,将每个点最近的K个点连上边。K是一个预先设定的值。

步骤2:确定权重

确定点与点之间的权重大小,例如选用热核函数来确定,如果点i和点j相连,那么它们关系的权重设定为:

使用最小的m个非零特征值对应的特征向量作为降维后的结果输出。

前面提到过,Laplacian Eigenmap具有区分数据点的特性,可以从下面的例子看出:

见图1所示,左边的图表示有两类数据点(数据是图片),中间图表示采用Laplacian Eigenmap降维后每个数据点在二维空间中的位置,右边的图表示采用PCA并取前两个主要方向投影后的结果,可以清楚地看到,在此分类问题上,Laplacian Eigenmap的结果明显优于PCA。

图2 roll数据的降维

图2说明的是,高维数据(图中3D)也有可能是具有低维的内在属性的(图中roll实际上是2D的),但是这个低维不是原来坐标表示,例如如果要保持局部关系,蓝色和下面黄色是完全不相关的,但是如果只用任何2D或者3D的距离来描述都是不准确的。

下面三个图是Laplacian Eigenmap在不同参数下的展开结果(降维到2D),可以看到,似乎是要把整个带子拉平了。于是蓝色和黄色差的比较远。

时间: 2024-08-03 03:00:45

【转】四大机器学习降维算法:PCA、LDA、LLE、Laplacian Eigenmaps的相关文章

四大机器学习降维算法:PCA、LDA、LLE、Laplacian Eigenmaps

四大机器学习降维算法:PCA.LDA.LLE.Laplacian Eigenmaps 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式. y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的).f可能是显式的或隐式的.线性的或非线性的. 目前大部分降维算法处理向量表达的数据,也有一些降维算法处理高阶张量表达的数据.之所以使用降维

sklearn中的降维算法PCA和SVD

sklearn中的降维算法PCA和SVD 1 概述 1.1 从什么叫“维度”说开来 1.2 sklearn中的降维算法 2 PCA与SVD 2.1 降维究竟是怎样实现? 2.2 重要参数n_components 2.2.1 迷你案例:高维数据的可视化 2.2.2 最大似然估计自选超参数 2.2.3 按信息量占比选超参数 2.3 PCA中的SVD 2.3.1 PCA中的SVD哪里来? 2.3.2 重要参数svd_solver 与 random_state 2.3.3 重要属性components_

ML: 降维算法-PCA

        PCA (Principal Component Analysis) 主成份分析 也称为卡尔胡宁-勒夫变换(Karhunen-Loeve Transform),是一种用于探索高维数据结构的技术.PCA通常用于高维数据集的探索与可视化.还可以用于数据压缩,数据预处理等.PCA可以把可能具有相关性的高维变量合成线性无关的低维变量,称为主成分( principal components).新的低维数据集会尽可能的保留原始数据的变量.PCA将数据投射到一个低维子空间实现降维.例如,二维数

非监督的降维算法--PCA

PCA是一种非监督学习算法,它能够在保留大多数有用信息的情况下,有效降低数据纬度. 它主要应用在以下三个方面: 1. 提升算法速度 2. 压缩数据,减小内存.硬盘空间的消耗 3. 图示化数据,将高纬数据映射到2维或3维 总而言之,PCA干的事情就是完成一个将原始的n维数据转化到k维的映射.其中,k<n 它的核心算法如下: 1. 将数据均一化 x' = [x-mean(x)] / range(x) 2. 计算它的协方差矩阵 即:Sigma = 1/m * x' * x 3. 进行svd分解,计算特

机器学习常用算法(LDA,CNN,LR)原理简述

1.LDA LDA是一种三层贝叶斯模型,三层分别为:文档层.主题层和词层.该模型基于如下假设:1)整个文档集合中存在k个互相独立的主题:2)每一个主题是词上的多项分布:3)每一个文档由k个主题随机混合组成:4)每一个文档是k个主题上的多项分布:5)每一个文档的主题概率分布的先验分布是Dirichlet分布:6)每一个主题中词的概率分布的先验分布是Dirichlet分布.文档的生成过程如下:1)对于文档集合M,从参数为β的Dirichlet分布中采样topic生成word的分布参数φ:2)对于每个

机器学习——降维(主成分分析PCA、线性判别分析LDA、奇异值分解SVD、局部线性嵌入LLE)

机器学习--降维(主成分分析PCA.线性判别分析LDA.奇异值分解SVD.局部线性嵌入LLE) 以下资料并非本人原创,因为觉得石头写的好,所以才转发备忘 (主成分分析(PCA)原理总结)[https://mp.weixin.qq.com/s/XuXK4inb9Yi-4ELCe_i0EA] 来源:?石头?机器学习算法那些事?3月1日 主成分分析(Principal components analysis,以下简称PCA)是最常用的降维方法之一,在数据压缩和消除冗余方面具有广泛的应用,本文由浅入深的

机器学习算法-PCA降维技术

机器学习算法-PCA降维 一.引言 在实际的数据分析问题中我们遇到的问题通常有较高维数的特征,在进行实际的数据分析的时候,我们并不会将所有的特征都用于算法的训练,而是挑选出我们认为可能对目标有影响的特征.比如在泰坦尼克号乘员生存预测的问题中我们会将姓名作为无用信息进行处理,这是我们可以从直观上比较好理解的.但是有些特征之间可能存在强相关关系,比如研究一个地区的发展状况,我们可能会选择该地区的GDP和人均消费水平这两个特征作为一个衡量指标.显然这两者之间是存在较强的相关关系,他们描述的都是该地区的

PCA 降维算法详解 以及代码示例

转载地址:http://blog.csdn.net/watkinsong/article/details/38536463 1. 前言 PCA : principal component analysis ( 主成分分析) 最近发现我的一篇关于PCA算法总结以及个人理解的博客的访问量比较高, 刚好目前又重新学习了一下PCA (主成分分析) 降维算法, 所以打算把目前掌握的做个全面的整理总结, 能够对有需要的人有帮助. 自己再看自己写的那个关于PCA的博客, 发现还是比较混乱的, 希望这里能过做好

ML: 降维算法-概述

机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达, y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的).f可能是显式的或隐式的.线性的或非线性的.使用降维的原因: 压缩数据以减少存储量. 去除噪声的影响 从数据中提取特征以便于进行分类 将数据投影到低维可视空间,以便于看清数据的分布 变量(特征)数量相对数据条数有可能过大,从而不符合某些模型的需求.打