Description
It‘s well known that DNA Sequence is a sequence only contains A, C, T and G, and it‘s very useful to analyze a segment of DNA Sequence,For example, if a animal‘s DNA sequence contains segment ATC then it may mean that the animal may have a genetic disease. Until now scientists have found several those segments, the problem is how many kinds of DNA sequences of a species don‘t contain those segments.
Suppose that DNA sequences of a species is a sequence that consist of A, C, T and G,and the length of sequences is a given integer n.
Input
First line contains two integer m (0 <= m <= 10), n (1 <= n <=2000000000). Here, m is the number of genetic disease segment, and n is the length of sequences.
Next m lines each line contain a DNA genetic disease segment, and length of these segments is not larger than 10.
Output
An integer, the number of DNA sequences, mod 100000.
Sample Input
4 3 AT AC AG AA
Sample Output
36
大意:
给出M个字符串,求有多少种长度为N且不包含这M个字符串的字符串。(字符串由A、C、G、T组成,M <= 10,N <= 2000000000,每个子串长度长度不超过10)
分析:
要求出不包含子串的字符串的个数,很明显可以用AC自动机 + 动态规划(O(NM^2))
首先,先读入子串构造一棵 Trie 树,然后在 Trie 树上建立失败指针(BFS),再在 Trie 树上跑一遍动态规划,F[i][j]表示长度为i,最后一个字符对应 Trie 数中第j个节点的方案数,需要注意的是叶子节点不能经过,最后得出的所有节点的方案数之和就是所求的答案。
矩阵乘法快速幂(O(M^2 * logN))
由于N非常大,所以动态规划肯定会T,但是我们研究数据范围会发现,M和字符串的程度都非常小,实际上按照最坏的情况,Trie 数也只要将数组开到100就够了。
才100?就算100的平方都存的下,100也太小了吧!得好好利用这小小的100。
100个节点,相当于100个状态,100个状态之间的转移,可以枚举一下每个节点指向的4个节点,这样每次转移只要O(4)的时间。但是如果用一个矩阵存下两两之间的连通性(即是否可以转移),这样就需要O(100)的时间来转移,这样明显慢,有什么用呢?
既然说出来当然会有用,原本的转移方程是F[i + 1][Trie[j].To[k]] += F[i][j] (k为0~3),但是如果这样的话转移方程就变成了F[i + 1][k] += F[i][j] * Mat[j][k] (k为0~100,Mat表示能否联通)。
如果换一个角度来看的话,就可以变成F[i][j] = sum (F[i - 1][k] * Mat[k][j]) ,这样的话就变成了一个递推式,而且是一个可以用矩阵乘法快速幂解决的递推式。
那剩下的工作就简单了,构造Mat矩阵,做快速幂,再乘上最后的矩阵就好了。
代码:
1 #include <cstdio> 2 #include <cstring> 3 struct Matrix { 4 int a[110][110]; 5 } mat, ti; 6 int n, m, len, last, tn, ans, f[110], t[110][4], v[110]; 7 char str[11]; 8 void BFS () 9 { 10 int q[110], hd, tl; 11 for (q[hd = tl = 0] = 0; hd <= tl; hd++) 12 for (int i = 0; i < 4; i++) 13 t[q[hd]][i] ? (q[hd] ? f[t[q[hd]][i]] = t[f[q[hd]]][i] : 0) ,v[t[q[hd]][i]] |= v[f[t[q[hd]][i]]], q[++tl] = t[q[hd]][i] : t[q[hd]][i] = t[f[q[hd]]][i]; 14 } 15 inline Matrix times (Matrix m1, Matrix m2) 16 { 17 Matrix ret; 18 memset (ret.a, 0, sizeof (ret.a)); 19 for (int i = 0; i <= tn; i++) 20 for (int j = 0; j <= tn; j++) 21 for (int k = 0; k <= tn; ret.a[i][j] %= 100000, k++) 22 ret.a[i][j] += (long long) m1.a[i][k] * m2.a[k][j] % 100000; 23 return ret; 24 } 25 inline int gc (char ch) 26 { 27 return ch == ‘A‘ ? 0 : ch == ‘C‘ ? 1 : ch == ‘T‘ ? 2 : 3; 28 } 29 int main () 30 { 31 scanf ("%d %d", &n, &m); 32 for (int i = 0; i < n; i++) 33 { 34 scanf ("%s", (char*) &str); 35 len = strlen (str); 36 last = 0; 37 for (int j = 0, ch = gc (str[j]); j < len; ch = gc (str[++j])) 38 last = t[last][ch] ? t[last][ch] : t[last][ch] = ++tn; 39 v[last] = 1; 40 } 41 BFS (); 42 for (int i = 0; i <= tn; i++) 43 for (int j = 0; j < 4; j++) 44 (!v[t[i][j]]) && !v[i] ? mat.a[i][t[i][j]]++ : 0; 45 for (int i = 0; i <= tn; i++) ti.a[i][i] = 1; 46 for (; m; m >>= 1) 47 (m & 1 ? ti = times (ti, mat) : ti), mat = times (mat, mat); 48 for (int i = 0; i <= tn; i++) ans += ti.a[0][i]; 49 printf ("%d", ans % 100000); 50 }