F - 最大子矩阵和
Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15 题解:怎么说呢。。就是第一行的一个序列加到第二行,找到他们的和序列的最大子序列,然后他们的和序列再加第三行,再找,每加一次找一次,加到第n行。 然后从第二行开始,按照上面的进行,再从第三行开始..... 直到第n行.... 每次都要更新他们的子矩阵的的最大值,用一个变量更新不说了,上代码,最下面有输出截图
#include<iostream> #include<cstdio> #include<cstring> using namespace std; int n,sum,f,Max; int b[20000]; int dp[150][150]; int main() { f=-100; cin>>n; for(int i=0; i<n; i++) for(int j=0; j<n; j++) { cin>>dp[i][j]; } for(int k=0; k<n; k++) { memset(b,0,sizeof(b)); // 一定每次记得清零 for(int i=k; i<n; i++) { for(int j=0; j<n; j++) { b[j]+=dp[i][j]; } sum = Max =-100; //赋很小的值 for(int i=0; i<n; i++) { if (sum<0) sum = b[i]; else sum += b[i]; if (Max < sum) Max = sum; } if(f<Max) // 每次都要比较更新最大子矩阵和 f=Max; } } cout<<f<<endl; }