单变量微分、导数与链式法则

映射是一种对应关系。

函数是一种映射,将变量间的关系形式化为数学描述。

令\(y = f(x)\),即\(y\)是\(x\)的函数,可以是\(y = 2x + 1\),也可以是\(y = sin(x)\)。\(x\)的变化将引起\(y\)的变化,\(x\)的变化量\(\triangle x\)导致\(y\)变化\(\triangle y\),当变化量很小(趋近于0)时,为瞬间变化量,记为\(dx\)和\(dy\),瞬间变化量之比为瞬间变化率,即\(\frac{dy}{dx}\)。瞬间变化率\(\frac{dy}{dx}\)乘以\(x\)的瞬间变化量\(dx\)为\(y\)的瞬间变化量\(dy\)。

导数(Derivative),是对瞬间变化率的衡量,即\(\frac{dy}{dx}\),导数也是函数,衡量每个\(x\)位置处的瞬间变化率。而微分(Differential,differentiation, differential calculus),指的是求导数——通过求瞬间变化量的关系来求导数。

当\(x\)为单变量时,导数为

\[f‘(a) = \frac{dy}{dx} \rvert _{x=a} = \lim_{h \rightarrow 0} \frac{f(a + h) - f(a)}{h}\]

每个位置处的导数如下

基本初等函数包括:幂函数、指数函数、对数函数、三角函数、反三角函数、常数函数。

基本初等函数通过四则运算和复合可以得到复杂函数,其中减法与加法等价,除法与乘法等价:

  1. 加法(减法):\(f(x)+g(x)\)
  2. 乘法(除法):\(f(x)g(x)\)
  3. 复合:\(f(g(x))\)

加法的求导可以理解为变化量(率)的叠加,即\(f‘ + g‘\);

乘法的求导可以理解为矩形面积的变化率,将\(f(x)\)和\(g(x)\)看成矩形的边长,导数为$\(\frac{(f + df)(g+dg)}{dx}\),在\(dx\)趋近于0时,面积增量为\(fdg+gdf\)(忽略了极小项),即导数为\(f‘g+fg‘\)。如下

复合函数的求导可以理解为变化率的传递,\(y = f(u)\),\(u=g(x)\),\(x\)的变化引起\(u\)的变化,\(u\)的变化引起\(y\)的变化,即\(dy=\frac{dy}{du} du =\frac{dy}{du} \frac{du}{dx} dx\),\(\frac{dy}{dx}= \frac{dy}{du} \frac{du}{dx}\),此为链式法则,\(f‘(x) = f‘(g(x)) g‘(x)\)。变化量的传递如下:

可以令\(x\)变化一个极小量如\(\triangle x=0.000001\),带入函数求\(y\)的变化量\(\triangle y\),用\(\frac{\triangle y}{\triangle x}\)来估计\(x\)位置的导数,但这无疑是费时费力的,常见函数的导数一般都存在解析形式,如下:

参考

原文地址:https://www.cnblogs.com/shine-lee/p/10324601.html

时间: 2024-11-25 21:47:13

单变量微分、导数与链式法则的相关文章

机器学习之单变量线性回归(Linear Regression with One Variable)

1. 模型表达(Model Representation) 我们的第一个学习算法是线性回归算法,让我们通过一个例子来开始.这个例子用来预测住房价格,我们使用一个数据集,该数据集包含俄勒冈州波特兰市的住房价格.在这里,我要根据不同房屋尺寸所售出的价格,画出我的数据集: 我们来看这个数据集,如果你有一个朋友正想出售自己的房子,如果你朋友的房子是1250平方尺大小,你要告诉他们这房子能卖多少钱. 那么,你可以做的一件事就是构建一个模型,也许是条直线.从这个数据模型上来看,也许你可以告诉你的朋友,他大概

机器学习 Machine Learning(by Andrew Ng)----第二章 单变量线性回归(Linear Regression with One Variable)

第二章 单变量线性回归(Linear Regression with One Variable) <模型表示(Model Representation)>                                                             <代价函数(Cost Function)>                                                          <梯度下降(Gradient Descent)

二、单变量线性回归(Linear Regression with One Variable)

本笔记为吴恩达机器学习在线课程笔记,课程网址(https://www.coursera.org/learn/machine-learning/) 2.1 模型表示 参考视频: 2 - 1 - Model Representation (8 min).mkv 本课程讲解的第一个算法为"回归算法",本节将要讲解到底什么是Model.下面,以一个房屋交易问题为例开始讲解,如下图所示(从中可以看到监督学习的基本流程). 所使用的数据集为俄勒冈州波特兰市的住房价格,根据数据集中的不同房屋尺寸所对

Coursera《machine learning》--(2)单变量线性回归(Linear Regression with One Variable)

本笔记为Coursera在线课程<Machine Learning>中的单变量线性回归章节的笔记. 2.1 模型表示 参考视频: 2 - 1 - Model Representation (8 min).mkv 本课程讲解的第一个算法为"回归算法",本节将要讲解到底什么是Model.下面,以一个房屋交易问题为例开始讲解,如下图所示(从中可以看到监督学习的基本流程). 所使用的数据集为俄勒冈州波特兰市的住房价格,根据数据集中的不同房屋尺寸所对应的出售价格,绘制出了数据集:假如

MATLAB 单变量函数一阶及N阶求导

1 对一维函数的求导及求特定函数处的变量值 %%最简单的一阶单变量函数进行求导 function usemyfunArray() %主函数必须位于最上方 clc clear syms x %syms x代表着声明符号变量x,只有声明了符号变量才可以进行符号运算,包括求导. %f(x)=sin(x)+x^2; %我们输入的要求导的函数 y = diff(sin(x)+x^2); %代表着对单变量函数f(x)求一阶导数 disp('f(x)=sin(x)+x^2的导数是'); pretty(y);

Stanford机器学习Week 1—单变量线性回归

本篇讲述以下内容: 单变量线性回归 代价函数 梯度下降 单变量线性回归 回顾下上节,在回归问题中,我们给定输入变量,试图映射到连续预期结果函数上从而得到输出.单变量线性回归就是从一个输入值预测一个输出值.输入/输出的对应关系就是一个线性函数. 下面是一个根据房屋面积预测房屋价格的例子. 假设有一个数据集,我们称作训练集,数据集包括房屋面积和房屋价格数据. x:表示输入变量,也叫特征变量. y:表示输出变量,也叫目标变量. (xi,yi):表示一个识训练样本,训练集的一行.i 表示 第 i 个训练

机器学习 (一) 单变量线性回归 Linear Regression with One Variable

文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang和 JerryLead 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 1.  单变量线性回归 Linear Regression with One Variable 1. 代价函数Cost Function 在单变量线性回归中,已知有一个训练集有一些关于x.y的数据(如×所示),当我们的预测值

斯坦福第二课:单变量线性回归(Linear Regression with One Variable)

2.1  模型表示 之前的房屋交易问题为例,假使我们回归问题的训练集(Training Set)如下表所示: 我们将要用来描述这个回归问题的标记如下: m                代表训练集中实例的数量 x                 代表特征/输入变量 y                 代表目标变量/输出变量 (x,y)            代表训练集中的实例 (x(i),y(i)  )    代表第 i 个观察实例 h                代表学习算法的解决方案或函数

Machine Learning笔记(二) 单变量线性回归

Machine Learning笔记(二) 单变量线性回归 注:本文内容资源来自 Andrew Ng 在 Coursera上的 Machine Learning 课程,在此向 Andrew Ng 致敬. 一.模型表示(Model Representation) 对于笔记(一)中的房价问题,如何进行求解,这将会是本文中讨论的重点. 现在假设有了更多的房屋价格数据,需要用一条直线来近似房屋价格的走势,如下图所示: 回顾笔记(一)中所讲 监督学习.非监督学习.回归 和 分类 的概念: 1. 监督学习(