自学tensorflow——2.使用tensorflow计算线性回归模型

废话不多说,直接开始

1.首先,导入所需的模块:

import numpy as np
import os
import tensorflow as tf

关闭tensorflow输出的一大堆硬件信息

os.environ[‘TF_CPP_MIN_LOG_LEVEL‘] = ‘2‘

2.写一个函数generate_data(),用来生成我们所需要的数据,这里使用的线性函数是y = 0.1*x + 0.3,具体解释见注释

def generate_data():#随机生成测试数据
    num_points = 1000
    vector_set = []
    for i in range(num_points):
        x1 = np.random.normal(0.0, 0.55)
        y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0, 0.03)#以函数y = 0.1x+0.3为基准生成点数据,加上一个随机值是为了防止生成的点都严格在一条直线上
        vector_set.append([x1, y1])
        x_data = [v[0] for v in vector_set]#就是vector_set里面的所有x1组成的列表
        y_data = [v[1] for v in vector_set]#同上
    return x_data, y_data

说一下上面8,9两行的操作,其实

x_data = [v[0] for v in vector_set]

for i in vector_set:
    x_data.append(i[0])

等价,只是这样写比较方便。

3.接下来就是我们的计算图的构建了

首先介绍一些东西:

tf.random_uniform(shape, a, b)#用来生成a~b范围内的均匀分布的随机数,其中shape是生成的张量的形状
tf.square(a)#计算a的平方
tf.reduce_mean()#(不指定axis的情况下)就是计算平均值
tf.train.GradientDescentOptimizer(0.5)#tf.train里面有许多优化方法,这里使用GradientDescentOptimizer()参数是学习率,范围0~1

博主也只是略知一二,具体可以去查手册或百度

代码如下,也是有注释的(注意,下面的*,+,-都是张量运算)

def train(x_data, y_data):
    w = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name = ‘w‘)#生成均匀分布的值,其中[1]可以换成(1, ),表示矩阵的形状
    b = tf.Variable(tf.zeros([1]), name = ‘b‘)#b初始化为0
    y = w * x_data + b#根据随机生成的w, x_data, b计算y
    loss = tf.reduce_mean(tf.square(y - y_data), name = ‘loss‘)#tf.square()平方,tf.reduce_mean(不指定axis的情况下)就是计算平均值,所以loss就是标准差
    optimizer = tf.train.GradientDescentOptimizer(0.5)#设置学习率为0.5
    train = optimizer.minimize(loss, name = ‘train‘)#使用优化器通过损失函数调整神经网络权值

    with tf.Session() as sess:#开启任务,为了方便,起了别名sess
      init = tf.global_variables_initializer()#同上
      sess.run(init)#初始化全部变量

      print(‘w = ‘, sess.run(w), ‘b = ‘, sess.run(b), ‘loss = ‘, sess.run(loss))#这是随机生成的,开始训练前的w,b和损失
      for step in range(50):#一共训练50次
          sess.run(train)
          print(‘w = ‘, sess.run(w), ‘b = ‘, sess.run(b), ‘loss = ‘, sess.run(loss))#这是每一次训练后的w,b和损失

最后只要调用这两个函数就行了

if __name__ == "__main__":
    x_data, y_data = generate_data()
    train(x_data, y_data)

对了,二次方程,甚至多次方程也可以哦

那么今天就到这里。

See you next time!

原文地址:https://www.cnblogs.com/rising-sun/p/10771720.html

时间: 2024-08-30 14:28:57

自学tensorflow——2.使用tensorflow计算线性回归模型的相关文章

用Tensorflow完成简单的线性回归模型

思路:在数据上选择一条直线y=Wx+b,在这条直线上附件随机生成一些数据点如下图,让TensorFlow建立回归模型,去学习什么样的W和b能更好去拟合这些数据点. 1)随机生成1000个数据点,围绕在y=0.1x+0.3 周围,设置W=0.1,b=0.3,届时看构建的模型是否能学习到w和b的值. import numpy as np import tensorflow as tf import matplotlib.pyplot as plt num_points=1000 vectors_se

tensorflow入门(1):构造线性回归模型

今天让我们一起来学习如何用TF实现线性回归模型.所谓线性回归模型就是y = W * x + b的形式的表达式拟合的模型. 我们先假设一条直线为 y = 0.1x + 0.3,即W = 0.1,b = 0.3,然后利用随机数在这条直线附近产生1000个随机点,然后利用tensorflow构造的线性模型去学习,最后对比模型所得的W和b与真实值的差距即可. (某天在浏览Github的时候,发现了一个好东西,Github上有一个比较好的有关tensorflow的Demo合集,有注释有源代码非常适合新手入

线性回归模型的 MXNet 与 TensorFlow 实现

本文主要探索如何使用深度学习框架 MXNet 或 TensorFlow 实现线性回归模型?并且以 Kaggle 上数据集 USA_Housing 做线性回归任务来预测房价. 回归任务,scikit-learn 亦可以实现,具体操作可以查看 线性回归模型的原理与 scikit-learn 实现. 载入数据 import pandas as pd import numpy as np name = '../dataset/USA_Housing.csv' dataset = pd.read_csv(

【TensorFlow】(01)线性回归

特别说明 代码地址:Github 环境说明 平台:WIN10(教育版) 环境:Anaconda5.2(Python3.6.6) IDE:Pacharm2018.2.3(专业版) TensorFlow:1.8.0(CPU) 任务目标 实现线性回归模型 代码实现 代码解析   1-2:导入必要库NumPy.matplotlib   3:导入tensorflow   5-8:设置超参数:学习率.迭代次数.训练集比例 10-17:生成数据,并拆分数据集,自定义预测样本 20-21:设置样本占位符,为样本

移动端目标识别(3)——使用TensorFlow Lite将tensorflow模型部署到移动端(ssd)之Running on mobile with TensorFlow Lite (写的很乱,回头更新一个简洁的版本)

承接移动端目标识别(2) 使用TensorFlow Lite在移动设备上运行         在本节中,我们将向您展示如何使用TensorFlow Lite获得更小的模型,并允许您利用针对移动设备优化的操作. TensorFlow Lite是TensorFlow针对移动和嵌入式设备的轻量级解决方案.它支持端上的机器学习推理,具有低延迟和小二进制模型大小. TensorFlow Lite使用了许多技术,例如允许更小和更快(定点数学)模型的量化内核. 对于本节,您需要从源代码构建TensorFlow

使用tensorflow实现最简单的线性回归算法

1 #线性回归:用线性模型y=Wx+b拟合sin 2 import numpy as np 3 import matplotlib.pyplot as plt 4 import tensorflow as tf 5 6 #数据,标签 7 x_data = np.linspace(-2*np.pi,2*np.pi,300) 8 noise = np.random.normal(-0.01,0.05,x_data.shape) 9 y_label = np.sin(x_data) + noise 1

使用Tensorflow搭建回归预测模型之八:模型与外部接口对接

前一篇中,我们讨论了模型的压缩,将标准tensorflow格式的模型文件转换成tflite格式,极大的缩小了模型的大小. 本篇我们将介绍如何使用标准C/C++来调用tflite格式的模型. 接下来依次介绍下: 一.BUILD文件修改: # Description: # TensorFlow Lite A/C of Traffic Assist. package(default_visibility = ["//visibility:public"]) licenses(["n

线性模型(3)——多重线性回归模型

前面介绍了简单线性回归模型,接下来讲多重线性回归模型. 简单线性回归是针对一个因变量和一个自变量之间的线性回归关系,而多重线性回归是指一个因变量和多个自变量之间的线性回归关系.相对于简单线性回归,多重线性回归更具有实际意义,因为在实际生活中,多因素相互作用非常普遍,同时对因变量造成影响的往往不止一个自变量. 多重线性回归主要解决的问题是1.估计自变量与因变量之间的线性关系(估计回归方程)2.确定哪些自变量对因变量有影响(影响因素分析)3.确定哪个自变量对因变量最影响最大,哪个最小(自变量重要性分

一元线性回归模型与最小二乘法及其C++实现

原文:http://blog.csdn.net/qll125596718/article/details/8248249 监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归.回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析.如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析.对于二维空间线性是一条直线:对于三维空间线性是一