高斯判别分析 Gaussian Discriminant Analysis

如果在我们的分类问题中,输入特征xx是连续型随机变量,高斯判别模型(Gaussian Discriminant Analysis,GDA)就可以派上用场了。

以二分类问题为例进行说明,模型建立如下:

  1. 样本输入特征为x∈Rnx∈Rn,其类别y∈{0,1}y∈{0,1};
  2. 样本类别yy服从参数为??的伯努力分布,即y∼Bernoulli(?)y∼Bernoulli(?);
  3. 两类样本分别服从不同的高斯分布,即x|y=0∼N(μ0,Σ),x|y=1∼N(μ1,Σ)x|y=0∼N(μ0,Σ),x|y=1∼N(μ1,Σ);

对应的概率分布形式如下:

p(y)=?y(1−?)1−y(1)(1)p(y)=?y(1−?)1−y

p(x|y=0)=1(2π)n2|Σ|12exp(−12(x−μ0)TΣ−1(x−μ0))(2)(2)p(x|y=0)=1(2π)n2|Σ|12exp?(−12(x−μ0)TΣ−1(x−μ0))

p(x|y=1)=1(2π)n2|Σ|12exp(−12(x−μ1)TΣ−1(x−μ1))(3)(3)p(x|y=1)=1(2π)n2|Σ|12exp?(−12(x−μ1)TΣ−1(x−μ1))

p(x|y)=1(2π)n2|Σ|12exp(−12(x−μy)TΣ−1(x−μy))(4)(4)p(x|y)=1(2π)n2|Σ|12exp?(−12(x−μy)TΣ−1(x−μy))

我们模型的参数包括?,μ0,μ1,Σ?,μ0,μ1,Σ。这里的两个高斯分布具有不同的均值μ0μ0和μ1μ1,但在实际应用中一般取相同的方差ΣΣ。

给定包含mm个样本的训练集S={(x(1),y(1)),(x(2),y(2)),?,(x(m),y(m))}S={(x(1),y(1)),(x(2),y(2)),?,(x(m),y(m))},似然函数形式如下:

L(?,μ0,μ1,Σ)=log∏mi=1p(x(i),y(i);?,μ0,μ1,Σ)=log∏mi=1p(x(i)|y(i);μ0,μ1,Σ)p(y(i);?)=∑mi=1logp(x(i)|y(i);μ0,μ1,Σ)+logp(y(i);?)=∑mi=1[−12(x(i)−μy(i))TΣ−1(x(i)−μy(i))−n2log(2π)−12log|Σ−1|+y(i)log?+(1−y(i))log(1−?)](5)(5)L(?,μ0,μ1,Σ)=log?∏i=1mp(x(i),y(i);?,μ0,μ1,Σ)=log?∏i=1mp(x(i)|y(i);μ0,μ1,Σ)p(y(i);?)=∑i=1mlog?p(x(i)|y(i);μ0,μ1,Σ)+log?p(y(i);?)=∑i=1m[−12(x(i)−μy(i))TΣ−1(x(i)−μy(i))−n2log?(2π)−12log?|Σ−1|+y(i)log??+(1−y(i))log?(1−?)]

通过最大似然进行参数估计,用似然函数LL对各个参数求偏导:

∂L(?,μ0,μ1,Σ)∂?=∂∂?∑mi=1[y(i)log?+(1−y(i))log(1−?)]=∑mi=1y(i)?−1−y(i)1−?=∑mi=1y(i)−??(1−?)=0⇒?=∑mi=1y(i)m=∑mi=11{y(i)=1}m(6)(6)∂L(?,μ0,μ1,Σ)∂?=∂∂?∑i=1m[y(i)log??+(1−y(i))log?(1−?)]=∑i=1my(i)?−1−y(i)1−?=∑i=1my(i)−??(1−?)=0⇒?=∑i=1my(i)m=∑i=1m1{y(i)=1}m

∂L(?,μ0,μ1,Σ)∂μ0=∂∂?∑mi=1[−121{y(i)=0}(x(i)−μ0)TΣ−1(x(i)−μ0)]=∂∂μ0∑mi=1−121{y(i)=0}⋅Tr[μT0Σ−1μ0−μT0Σ−1x(i)−(x(i))TΣ−1μ0]=∑mi=11{y(i)=0}Σ−1(x(i)−μ0)=0⇒μ0=∑mi=11{y(i)=0}x(i)∑mi=11{y(i)=0}(7)(7)∂L(?,μ0,μ1,Σ)∂μ0=∂∂?∑i=1m[−121{y(i)=0}(x(i)−μ0)TΣ−1(x(i)−μ0)]=∂∂μ0∑i=1m−121{y(i)=0}⋅Tr[μ0TΣ−1μ0−μ0TΣ−1x(i)−(x(i))TΣ−1μ0]=∑i=1m1{y(i)=0}Σ−1(x(i)−μ0)=0⇒μ0=∑i=1m1{y(i)=0}x(i)∑i=1m1{y(i)=0}

同理,可得

μ1=∑mi=11{y(i)=1}x(i)∑mi=11{y(i)=1}(8)(8)μ1=∑i=1m1{y(i)=1}x(i)∑i=1m1{y(i)=1}

∂L(?,μ0,μ1,Σ)∂Σ=∂∂Σ[−12(x(i)−μy(i))TΣ−1(x(i)−μy(i))−12log|Σ|]=∑mi=112[(Σ−1(x(i)−μy(i))(x(i)−μy(i))TΣ−1)T−(Σ−1)T]=12∑mi=1(x(i)−μy(i))(x(i)−μy(i))T−Σ=0⇒Σ=1m(x(i)−μy(i))(x(i)−μy(i))T(9)(9)∂L(?,μ0,μ1,Σ)∂Σ=∂∂Σ[−12(x(i)−μy(i))TΣ−1(x(i)−μy(i))−12log?|Σ|]=∑i=1m12[(Σ−1(x(i)−μy(i))(x(i)−μy(i))TΣ−1)T−(Σ−1)T]=12∑i=1m(x(i)−μy(i))(x(i)−μy(i))T−Σ=0⇒Σ=1m(x(i)−μy(i))(x(i)−μy(i))T

仔细分析一下估计出的四个参数,我们会发现??就是在训练集上统计出的y=1y=1的样本出现的概率,μ0μ0和μ1μ1则分别为两类样本各自的均值,ΣΣ为整个训练集上的样本方差。

有了这些参数,我们怎样进行预测呢?这就很简单了,将各参数带入p(x|y)p(x|y)和p(y)p(y),利用p(x|y)p(y)=p(x,y)p(x|y)p(y)=p(x,y)可导出联合概率,我们取使联合概率p(x,y)p(x,y)最大的类别yy即可

argmaxy∈{0,1}p(x|y)p(y)(10)(10)argmaxy∈{0,1}p(x|y)p(y)

最后,我们来分析高斯判别模型和Logistic回归之间的情缘。如果x|yx|y服从高斯分布N(μ,Σ)N(μ,Σ)(只针对yy取两个离散值的情况),则p(y|x)p(y|x)具有logistic函数的形式;反过来,p(y|x)p(y|x)形式上为logistic函数并不能说明x|y∼N(μ,Σ)x|y∼N(μ,Σ)。实际上,有很多组假设都能使p(y|x)p(y|x)有logistic函数的形式,只要假设满足x|yx|y服从指数族分布(Exponential Family Distribution)。例如,x|y=0∼Poisson(λ0)x|y=0∼Poisson(λ0)和x|y=1∼Poisson(λ1)x|y=1∼Poisson(λ1),则p(y|x)p(y|x)在形式上同样为logistic函数。以高斯判别分析为例,简单证明一下:

====p(y=1|x)p(x|y=1)p(y=1)p(x|y=1)p(y=1)+p(x|y=0)p(y=0)exp(−12(x−μ1)TΣ−1(x−μ1))?exp(−12(x−μ1)TΣ−1(x−μ1))?+exp(−12(x−μ0)TΣ−1(x−μ0))(1−?)11+exp(12(x−μ1)TΣ−1(x−μ1)−12(x−μ0)TΣ−1(x−μ0))1−??11+exp(xTΣ−1(μ0−μ1)+12μT1Σ−1μ1−12μT0Σ−1μ0+log(1−?)−log?)(11)(11)p(y=1|x)=p(x|y=1)p(y=1)p(x|y=1)p(y=1)+p(x|y=0)p(y=0)=exp?(−12(x−μ1)TΣ−1(x−μ1))?exp?(−12(x−μ1)TΣ−1(x−μ1))?+exp?(−12(x−μ0)TΣ−1(x−μ0))(1−?)=11+exp?(12(x−μ1)TΣ−1(x−μ1)−12(x−μ0)TΣ−1(x−μ0))1−??=11+exp?(xTΣ−1(μ0−μ1)+12μ1TΣ−1μ1−12μ0TΣ−1μ0+log?(1−?)−log??)

高斯判别分析 Gaussian Discriminant Analysis

时间: 2024-08-27 20:25:42

高斯判别分析 Gaussian Discriminant Analysis的相关文章

线性判别分析(Linear Discriminant Analysis, LDA)算法初识

LDA算法入门 一. LDA算法概述: 线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD),是模式识别的经典算法,它是在1996年由Belhumeur引入模式识别和人工智能领域的.性鉴别分析的基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的子空间有最大的类间距离和最小的类内距离,即模式在该空间中有最佳

线性判别分析(Linear Discriminant Analysis, LDA)算法分析

LDA算法入门 一. LDA算法概述: 线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD),是模式识别的经典算法,它是在1996年由Belhumeur引入模式识别和人工智能领域的.性鉴别分析的基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的子空间有最大的类间距离和最小的类内距离,即模式在该空间中有最佳

机器学习理论基础学习3.4--- Linear classification 线性分类之Gaussian Discriminant Analysis高斯判别模型

一.什么是高斯判别模型? 二.怎么求解参数? 原文地址:https://www.cnblogs.com/nxf-rabbit75/p/10284255.html

线性判别分析(Linear Discriminant Analysis)

线性判别分析(Linear Discriminant Analysis) 标签(空格分隔): 监督学习 @author : [email protected] @time : 2016-07-11 线性判别分析Linear Discriminant Analysis 线性分类器 判别式函数discriminant functions 从判别式或后验概率到决策面 线性判别分析Linear Discriminant Analysis 二次判别分析QDA Fisher判别式 类间距离 类内距离 Fis

【cs229-Lecture5】生成学习算法:1)高斯判别分析(GDA);2)朴素贝叶斯(NB)

参考: cs229讲义 机器学习(一):生成学习算法Generative Learning algorithms:http://www.cnblogs.com/zjgtan/archive/2013/06/08/3127490.html 首先,简单比较一下前几节课讲的判别学习算法(Discriminative Learning Algorithm)和本节课讲的生成学习算法(Generative Learning Algorithm)的区别. eg:问题:Consider a classi?cat

【转载】线性判别分析(Linear Discriminant Analysis)(一)

线性判别分析(Linear Discriminant Analysis)(一) 1. 问题 之前我们讨论的PCA.ICA也好,对样本数据来言,可以是没有类别标签y的.回想我们做回归时,如果特征太多,那么会产生不相关特征引入.过度拟合等问题.我们可以使用PCA来降维,但PCA没有将类别标签考虑进去,属于无监督的. 比如回到上次提出的文档中含有“learn”和“study”的问题,使用PCA后,也许可以将这两个特征合并为一个,降了维度.但假设我们的类别标签y是判断这篇文章的topic是不是有关学习方

【转载】线性判别分析(Linear Discriminant Analysis)(二)

线性判别分析(Linear Discriminant Analysis)(二) 4. 实例 将3维空间上的球体样本点投影到二维上,W1相比W2能够获得更好的分离效果. PCA与LDA的降维对比: PCA选择样本点投影具有最大方差的方向,LDA选择分类性能最好的方向. LDA既然叫做线性判别分析,应该具有一定的预测功能,比如新来一个样例x,如何确定其类别? 拿二值分来来说,我们可以将其投影到直线上,得到y,然后看看y是否在超过某个阈值y0,超过是某一类,否则是另一类.而怎么寻找这个y0呢? 看 根

线性判别分析(Linear Discriminant Analysis,LDA)

一.LDA的基本思想 线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD),是模式识别的经典算法,它是在1996年由Belhumeur引入模式识别和人工智能领域的.线性鉴别分析的基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的子空间有最大的类间距离和最小的类内距离,即模式在该空间中有最佳的可分离性. 如

[监督学习]GDA 高斯判别分析

高斯判别分析(Gaussian discriminative analysis )是一个较为直观的模型,基本的假设是我们得到的数据是独立同分布的(IID),虽然在实际中这种假设很难达到,但有时候拥有了好的假设可以得到较好的结果.在Andrew Ng大神的CS229 Lecture notes中有一个例子:假设我们要对大象和狗分类,回归模型和感知机模型是在两类数据之间找到一个decision boundary,通过这个decision boundary来区分大象和狗.高斯判别分析提供了另外一种思路