java未来趋势 Java促进大数据的大发展

没有Java,甚至不会有大数据的大发展,Hadoop本身就是用Java编写的。当你需要在运行MapReduce的服务器集群上发布新功能时,你需

要进行动态的部署,而这正是Java所擅长的。

大数据领域支持Java的主流开源工具:

1. HDFS

HDFS是Hadoop应用程序中主要的分布式储存系统, HDFS集群包含了一个NameNode(主节点),这个节点负责管理所有文件系统的元数据

及存储了真实数据的DataNode(数据节点,可以有很多)。HDFS针对海量数据所设计,所以相比传统文件系统在大批量小文件上的优化,

HDFS优化的则是对小批量大型文件的访问和存储。

2. MapReduce

Hadoop MapReduce是一个软件框架,用以轻松编写处理海量(TB级)数据的并行应用程序,以可靠和容错的方式连接大型集群中上万个节

点(商用硬件)。

3. HBase

Apache HBase是Hadoop数据库,一个分布式、可扩展的大数据存储。它提供了大数据集上随机和实时的读/写访问,并针对了商用服务器

集群上的大型表格做出优化——上百亿行,上千万列。其核心是Google Bigtable论文的开源实现,分布式列式存储。就像Bigtable利用

GFS(Google File System)提供的分布式数据存储一样,它是Apache Hadoop在HDFS基础上提供的一个类Bigatable。

4. Cassandra

Apache Cassandra是一个高性能、可线性扩展、高有效性数据库,可以运行在商用硬件或云基础设施上打造完美的任务关键性数据平台。

在横跨数据中心的复制中,Cassandra同类最佳,为用户提供更低的延时以及更可靠的灾难备份。通过log-structured update、反规范化

和物化视图的强支持以及强大的内置缓存,Cassandra的数据模型提供了方便的二级索引(column indexe)。

5. Hive

Apache Hive是Hadoop的一个数据仓库系统,促进了数据的综述(将结构化的数据文件映射为一张数据库表)、即席查询以及存储在

Hadoop兼容系统中的大型数据集分析。Hive提供完整的SQL查询功能——HiveQL语言,同时当使用这个语言表达一个逻辑变得低效和繁琐

时,HiveQL还允许传统的Map/Reduce程序员使用自己定制的Mapper和Reducer。

6. Pig

Apache Pig是一个用于大型数据集分析的平台,它包含了一个用于数据分析应用的高级语言以及评估这些应用的基础设施。Pig应用的闪

光特性在于它们的结构经得起大量的并行,也就是说让它们支撑起非常大的数据集。Pig的基础设施层包含了产生Map-Reduce任务的编译

器。Pig的语言层当前包含了一个原生语言——Pig Latin,开发的初衷是易于编程和保证可扩展性。

7. Chukwa

Apache Chukwa是个开源的数据收集系统,用以监视大型分布系统。建立于HDFS和Map/Reduce框架之上,继承了Hadoop的可扩展性和稳定

性。Chukwa同样包含了一个灵活和强大的工具包,用以显示、监视和分析结果,以保证数据的使用达到最佳效果。

8. Ambari

Apache Ambari是一个基于web的工具,用于配置、管理和监视Apache Hadoop集群,支持Hadoop HDFS,、Hadoop MapReduce、Hive、

HCatalog,、HBase、ZooKeeper、Oozie、Pig和Sqoop。Ambari同样还提供了集群状况仪表盘,比如heatmaps和查看MapReduce、Pig、Hive

应用程序的能力,以友好的用户界面对它们的性能特性进行诊断。

9. ZooKeeper

Apache ZooKeeper是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、命名服务、分布式同步、组服务等。

ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。

10. Sqoop

Sqoop是一个用来将Hadoop和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库中数据导入Hadoop的HDFS中,也可以将

HDFS中数据导入关系型数据库中。

11. Oozie

Apache Oozie是一个可扩展、可靠及可扩充的工作流调度系统,用以管理Hadoop作业。Oozie Workflow作业是活动的Directed Acyclical

Graphs(DAGs)。Oozie Coordinator作业是由周期性的Oozie Workflow作业触发,周期一般决定于时间(频率)和数据可用性。Oozie与

余下的Hadoop堆栈结合使用,开箱即用的支持多种类型Hadoop作业(比如:Java map-reduce、Streaming map-reduce、Pig、 Hive、

Sqoop和Distcp)以及其它系统作业(比如Java程序和Shell脚本)。

12. Mahout

Apache Mahout是个可扩展的机器学习和数据挖掘库,当前Mahout支持主要的4个用例:

推荐挖掘:搜集用户动作并以此给用户推荐可能喜欢的事物。

聚集:收集文件并进行相关文件分组。

分类:从现有的分类文档中学习,寻找文档中的相似特征,并为无标签的文档进行正确的归类。

频繁项集挖掘:将一组项分组,并识别哪些个别项会经常一起出现。

13. HCatalog

Apache HCatalog是Hadoop建立数据的映射表和存储管理服务,它包括:

提供一个共享模式和数据类型机制。

提供一个抽象表,这样用户就不需要关注数据存储的方式和地址。

为类似Pig、MapReduce及Hive这些数据处理工具提供互操作性。

时间: 2024-10-10 17:02:16

java未来趋势 Java促进大数据的大发展的相关文章

什么是大数据?大数据学习路线和就业方向

大数据又称巨量资料,就是数据量大.来源广.种类繁多(日志.视频.音频),大到PB级别,现阶段的框架就是为了解决PB级别的数据. 专业的来讲:大数据(big data,mega data),或称巨量资料,指的是需要新处理模式才能具有更强的决策力.洞察力和流程优化能力的海量.高增长率和多样化的信息资产. 大数据的5V特点:Volume(大量).Velocity(高速).Variety(多样).Value(价值密度).Veracity(真实性). 二.学大数据需要什么语言基础? 首先,学习大数据是需要

【大数据】大数据时代--网络数据与科学的时代

大数据_大数据时代_大数据概念_网络大数据 随着大数据时代的来临,大数据也吸引了越来越多的关注.网络大数据(http://www.raincent.com)整合了大数据,大数据概念,大数据处理,大数据分析,cdn,cdn加速,idc,网络测量,网络监测,网络安全测量,网站性能监测,行业分析报告,行业研究报告,免费行业报告等服务为一体,力争打造中国最大的网络大数据中心. 这两个词最早出现是在上世纪90年代.按照当时的解释,大科学时代主要是指单打独斗的时代结束了,要搞集团军式的科研.也有一种说法是,

【网络大数据】大数据时代:网络营销能否颠覆传统?

大数据分析_大数据技术_大数据处理_云计算数据中心 网络大数据(www.raincent.com)整合了大数据分析,大数据处理,大数据技术,云计算数据等服务为一体,力争打造国内数一数二的网络数据处理平台. 众所周知,构成世界的三大要素为物质,能源和信息.由于互联网的迅猛发展,一场人类历史上从未有过的庞大商业变革正发生在我们面前,那就是网络营销+大数据时代. 千思传媒根据美国马萨诸塞州的EMC公司的调查报告表明,2011年全球被创建和被复制的数字总量是1.8ZB,相当于两千多亿个时长为两小时的视频

【网络大数据】大数据时代:数据融合或将发挥更大价值

大数据_大数据时代_大数据概念_网络大数据 随着大数据时代的来临,大数据也吸引了越来越多的关注.网络大数据(http://www.raincent.com)整合了大数据,大数据概念,大数据处理,大数据分析,cdn,cdn加速,idc,网络测量,网络监测,网络安全测量,网站性能监测,行业分析报告,行业研究报告,免费行业报告等服务为一体,力争打造中国最大的网络大数据中心. 随着互联网技术的发展.全媒体环境的全面形成,"大数据"已成为新的时代主题词.海量级的数据催生了海量的搜集.存储.管理.

追本溯源 解析“大数据生态环境”发展现状(CSDN)

程学旗先生是中科院计算所副总工.研究员.博士生导师.网络科学与技术重点实验室主任.本次程学旗带来了中国大数据生态系统的基础问题方面的内容分享.大数据的发展越来越快,但是对于大数据的认知大都还停留在最初的阶段——大数据是一类资源.一类工具,其实“大数据”更多的体现的是一个认知和思维,是一种战略.认知和文化. 以下为分享实录全文: 一年多来,通过组织中国大数据技术大会.CCF大数据学术会议以及各类大大小小的应用峰会与学术论坛,结合我们科学院网络数据科学与技术重点实验室所承担的与大数据相关的重大基础课

蔡先生论道大数据之一 , 大数据由来

我记得早在2001年,Gartner公司的一份研究报告首次出现"大数据(Big Data)"概念的提法.但是到今天业内对"大数据"一词的定义说法不一,但越来越多的研究机构和网络媒体开始关注它.大数据正成为继云计算之后新的热词.同云计算一样,大数据虽然也看不见摸不到,却与今天的IT技术发展如影随形,已经深入到当前的信息生产.加工.交换过程之中,我们已经享受到的某些信息服务,如在社交网站看到的是自己想关注甚至是感兴趣的广告而看不到不想关注的广告,这其实是大数据技术的功劳

不要让大数据成大窥探

上段时间万维网之父Sir Tim Berners-Lee出席一活动,就互联网隐私.大数据谈了一些个人看法.他称,提高对用户隐私的保护,对互联网来说很有必要,因为人们有权看清他们的数据将如何被使用.他还表示,提供个人数据访问通道的机制可以促成"富数据"而非"大数据"的结果. 他以个人病例为例进行了说明.他说,个人病例应该能够让医生和亲人看到,但是肯定不应该让保险公司以及其他人看到.对于Sir Tim Berners-Lee的言论和观点,笔者是非常赞同的.借此也顺便&q

关于.NET大数据量大并发量的数据连接池管理

转自:http://www.cnblogs.com/virusswb/archive/2010/01/08/1642055.html 我以前对.NET连接池的认识是错误的,原来以为在web.config中设置了连接池,每次发起的数据库连接也还是会是新的,每个sql请求就是一个连接,需要打开和关闭.因此就想设计一个连接池,然后保持固定的连接数,需要数据库连接就从连接池中取出来一个给请求用,用完毕就设置连接空闲,等待下次请求.这样看来是多余的,ADO.NET已经为我们提供这样的连接池管理,每个连接字

1.试述大数据对思维方式的重要影响。 2.详细阐述大数据、云计算、物联网之间的区别与联系。 3.简述你对大数据应用与发展的看法,以及你在这次大数据浪潮中想扮演什么角色。

1.大数称巨量资料,指的是需要新处理模式才能具有更强的决策力.洞察力和流程优化能力的海量.高增长率和多样化的信息资产.所以利用大数据的人们思维更加的敏锐,也会对人们的思维方式产生扩大化,通过大量的数据进行分析,从而形成更多推进人类社会进步的产品,走上更新的时代. 2.物联网产生大数据,大数据助力物联网.目前,物联网正在支撑起社会活动和人们生活方式的变革,被称为继计算机.互联网之后冲击现代社会的第三次信息化发展浪潮.物联网在将物品和互联网连接起来,进行信息交换和通信,以实现智能化识别.定位.跟踪.

大数据可视化大屏设计经验,教给你!

 前言    大数据产业正在用一个超乎我们想象的速度蓬勃发展,大数据时代的来临,越来越多的公司开始意识到数据资源的管理和运用,大数据可视化大屏展示被更多的企业青睐,身为UI设计师的我们,也要紧跟时代的步伐学习这方面的设计. 今天要跟大家分享我一年多设计大数据可视化大屏的经验和观点,下面从UI设计.交互设计.动效设计三个方面来分享.  UI设计   设计大屏一样要谨记要以展示数据为核心,在任何炫酷屌炸天表现都要建立在不影响数据的有效展示上!   下图是天猫可视化大屏设计,图中屌炸天的3D地球围绕粒