HDU - 3037

Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.

Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.InputThe first line contains one integer T, means the number of cases.

Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.OutputYou should output the answer modulo p.Sample Input

2
1 2 5
2 1 5

Sample Output

3
3

Hint

Hint

For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on.
The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are:
 put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.
 1 #include<iostream>
 2 #include<stdio.h>
 3 #include<cstring>
 4
 5 using namespace std;
 6
 7 #define LL long long
 8
 9 int quick(LL a, LL b,LL p)
10 {
11     int ans = 1;
12     a %= p;
13     while(b)
14     {
15         if(b & 1)
16         {
17             ans = ans * a % p;
18             b--;
19         }
20         b >>= 1;
21         a = a * a % p;
22     }
23     return ans;
24 }
25
26 int C(LL n,LL m,LL p)
27 {
28     LL a = 1,b = 1;
29     if(m > n) return 0;
30     while(m)
31     {
32         a = (a * n) % p;
33         b = (b * m) % p;
34         m--;
35         n--;
36     }
37     return ((LL)a * (LL)quick(b,p-2,p))%p;
38 }
39
40 int Lucas(LL n, LL m,int p)
41 {
42     if(m == 0)
43         return 1;
44     return (LL)C(n % p, m % p,p) * (LL)Lucas(n / p, m / p,p) % p;
45 }
46
47 int main()
48 {
49     LL n,m;
50     int i;
51     int T;
52     int p;
53     scanf("%d",&T);
54     while(T--)
55     {
56         scanf("%lld%lld%d",&n,&m,&p);
57         printf("%d\n",Lucas(m+n,m,p));
58     }
59     return 0;
60 }
时间: 2024-12-25 01:41:52

HDU - 3037的相关文章

HDU 3037 Saving Beans (Lucas定理)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3037 推出公式为C(n + m, m) % p, 用Lucas定理求大组合数取模的值 代码: #include <stdio.h> #include <string.h> #include <algorithm> using namespace std; int t; long long n, m, p; long long pow(long long n, long lo

hdu 3037 Saving Beans(组合数学)

hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以用到Lucas定理. #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long ll; ll n, m, p; ll qPow (ll a

HDU 3037 Saving Beans(lucas定理)

题目大意:豆子数i (1~m)分到n颗树上.  树可以为空,那么对于每个i,分配方式是 C(n+i-1,n-1)......于是我用for(i=0-->m)做,不幸超时,m太大. 不过竟然公式可以化简: for(int i=0;i<=m;i++) C(n+i-1,n-1)=C(n+i-1,i) 组合原理: 公式 C(n,k) = C(n-1,k)+C(n-1,k-1) C(n-1,0)+C(n,1)+...+C(n+m-1,m) = C(n,0)+C(n,1)+C(n+1,2)+...+C(n

HDU 3037 Saving Beans

/* hdu3037 http://acm.hdu.edu.cn/showproblem.php?pid=3037 lucas 模板题 */ #include <cstdio> #include <cmath> const long long Nmax=100005; long long p; long long ex_gcd(long long a,long long b,long long &x,long long &y)//solve x,y in a*x+b

HDU 3037 Saving Beans (Lucas法则)

主题链接:pid=3037">http://acm.hdu.edu.cn/showproblem.php?pid=3037 推出公式为C(n + m, m) % p. 用Lucas定理求大组合数取模的值 代码: #include <stdio.h> #include <string.h> #include <algorithm> using namespace std; int t; long long n, m, p; long long pow(lo

HDU 3037 Saving Beans 多重集合的结合 lucas定理

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3037 题目描述: 要求求x1 + x2 + x3 + ...... + xn <= m 非负整数解的个数, 结果对P取模, 输入的变量是n, m, p, P一定是素数 解题思路: x1 + ... + xn = m 非负整数解的个数是C(n+m-1, n) , 所以答案就是 C(n+0-1, 0) + C(n+1-1, 1) + ...... C(n+m-1, n) 对P取模, 由于组合数公式C(

HDU 3037 Saving Beans (数论,Lucas定理)

题意:问用不超过 m 颗种子放到 n 棵树中,有多少种方法. 析:题意可以转化为 x1 + x2 + .. + xn = m,有多少种解,然后运用组合的知识就能得到答案就是 C(n+m, m). 然后就求这个值,直接求肯定不好求,所以我们可以运用Lucas定理,来分解这个组合数,也就是Lucas(n,m,p)=C(n%p,m%p)* Lucas(n/p,m/p,p). 然后再根据费马小定理就能做了. 代码如下: 第一种: #pragma comment(linker, "/STACK:10240

HDU 3037 Saving Beans (Lucas定理)

/*求在n棵树上摘不超过m颗豆子的方案,结果对p取模. 求C(n+m,m)%p. 因为n,m很大,这里可以直接套用Lucas定理的模板即可. Lucas(n,m,p)=C(n%p,m%p,p)*Lucas(n/p,m/p,p): ///这里可以采用对n分段递归求解, Lucas(x,0,p)=1: 将n,m分解变小之后问题又转换成了求C(a/b)%p. 而C(a,b) =a! / ( b! * (a-b)! ) mod p 其实就是求 ( a! / (a-b)!) * ( b! )^(p-2)

hdu 3037 Saving Beans 组合数取模模板题。。

Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2707    Accepted Submission(s): 1014 Problem Description Although winter is far away, squirrels have to work day and night to save b

HDU 3037 Saving Beans 大组合数 lucas定理

直接lucas降到10w以内搞组合数 #include <cstdio> #include <cstring> typedef __int64 LL; LL f[110010]; LL pow(LL a, LL b, LL c) { LL ans = 1; while(b) { if(b&1) ans = (ans*a) % c; b >>= 1; a = (a*a) % c; } return ans; } LL cm(LL n, LL m, LL p) {