Reincarnation
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)
Problem Description
Now you are back,and have a task to do:
Given you a string s consist of lower-case English letters only,denote f(s) as the number of distinct sub-string of s.
And you have some query,each time you should calculate f(s[l...r]), s[l...r] means the sub-string of s start from l end at r.
Input
The first line contains integer T(1<=T<=5), denote the number of the test cases.
For each test cases,the first line contains a string s(1 <= length of s <= 2000).
Denote the length of s by n.
The second line contains an integer Q(1 <= Q <= 10000),denote the number of queries.
Then Q lines follows,each lines contains two integer l, r(1 <= l <= r <= n), denote a query.
Output
For each test cases,for each query,print the answer in one line.
Sample Input
2
bbaba
5
3 4
2 2
2 5
2 4
1 4
baaba
5
3 3
3 4
1 4
3 5
5 5
Sample Output
3
1
7
5
8
1
3
8
5
1
Hint
I won‘t do anything against hash because I am nice.Of course this problem has a solution that don‘t rely on hash.
题意:
给你一个母串,
Q个询问,每次询问你[L,R] 属于这一段中不同子串的个数是多少
题解:
考虑离线
把询问缩小,相同L的询问划分为一类
这样最多就是建立 2000 个后缀自动机了
#include <bits/stdc++.h> inline long long read(){long long x=0,f=1;char ch=getchar();while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();}while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();}return x*f;} using namespace std; const int N = 2e3+7; const long long mod = 1000000007; long long now; int isPlus[N * 2],endpos[N * 2];int d[N * 2]; int tot,slink[2*N],trans[2*N][28],minlen[2*N],maxlen[2*N],pre; int newstate(int _maxlen,int _minlen,int* _trans,int _slink){ maxlen[++tot]=_maxlen;minlen[tot]=_minlen; slink[tot]=_slink; if(_trans)for(int i=0;i<26;i++)trans[tot][i]=_trans[i],d[_trans[i]]+=1; return tot; } long long update(int u) { return 1LL*(maxlen[u] - minlen[u] + 1); } int add_char(char ch,int u){ int c=ch-‘a‘,v=u; int z=newstate(maxlen[u]+1,-1,NULL,0); isPlus[z] = 1; while(v&&!trans[v][c]){trans[v][c]=z;d[z]+=1;v=slink[v];} if(!v){ minlen[z]=1;slink[z]=1;now += update(z);return z;} int x=trans[v][c]; if(maxlen[v]+1==maxlen[x]){slink[z]=x;minlen[z]=maxlen[x]+1;now += update(z);return z;} int y=newstate(maxlen[v]+1,-1,trans[x],slink[x]); now -= update(x); slink[z]=slink[x]=y;minlen[x]=minlen[z]=maxlen[y]+1; now += update(x); while(v&&trans[v][c]==x){trans[v][c]=y;d[x]--,d[y]++;v=slink[v];} minlen[y]=maxlen[slink[y]]+1; now += update(y);now += update(z); return z; } void init_sam() { for(int i = 1; i <= tot; ++i) for(int j = 0; j < 26; ++j) trans[i][j] = 0; pre = tot = 1; } int T,n; long long ans[20000]; char a[N * 2]; struct ss{int L,R,id;}Q[20000]; int cmp(ss s1,ss s2) { if(s1.L == s2.L)return s1.R < s2.R; return s1.L < s2.L; } int main() { scanf("%d",&T); while(T--) { scanf("%s%d",a+1,&n); for(int i = 1; i <= n; ++i) scanf("%d%d",&Q[i].L,&Q[i].R),Q[i].id = i; sort(Q+1,Q+n+1,cmp); int l = 1,r = 0; for(int i = 1; i <= n; ++i) { if(Q[i].L != Q[i-1].L) {init_sam(); l = Q[i].L,r = l-1; now = 0; } while(r < Q[i].R){ pre = add_char(a[(++r)],pre); } ans[Q[i].id] = now; } for(int i = 1; i <= n; ++i) printf("%lld\n",ans[i]); } return 0; }