MongoDB中聚合工具Aggregate等的介绍与使用

Aggregate是MongoDB提供的众多工具中的比较重要的一个,类似于SQL语句中的GROUP BY。聚合工具可以让开发人员直接使用MongoDB原生的命令操作数据库中的数据,并且按照要求进行聚合。

MongoDB提供了三种执行聚合的方法:Aggregation Pipleline,map-reduce功能和 Single Purpose Aggregation Operations

其中用来做聚合操作的几个函数是

  • aggregate(pipeline,options) 指定 group 的 keys, 通过操作符 $push/$addToSet/$sum 等实现简单的 reduce, 不支持函数/自定义变量
  • group({ key, reduce, initial [, keyf] [, cond] [, finalize] }) 支持函数(keyfmapReduce 的阉割版本
  • mapReduce
  • count(query)
  • distinct(field,query)

1、Aggregation Pipleline

MongoDB’s aggregation framework is modeled on the concept of data processing pipelines. Documents enter a multi-stage pipeline that transforms the documents into an aggregated result.

管道在*nix中将上一个命令输出的数据作为下一个命令的参数。MongoDB中的管道聚合非常实用,提供高效的数据聚合,并且是MongoDB中数据聚合的首选方法

官方给的图:

[
    {$match: {status: "A"}},
    {$group: {_id: "$cust_id", total: {$sum: "$amount"}}}
]

aggreagte是一个数组,其中包含多个对象(命令),通过遍历Pipleline数组对collection中的数据进行操作。

$match:查询条件

$group:聚合的配置

  • _id代表你想聚合的数据的主键,上述数据中,你想聚合所有cust_id相同的条目的amount的总和,那_id即被设置为cust_id_id必须,你可以填写一个空值。
  • total代表你最后想输出的数据之一,这里total是每条结果中amount的总和。
  • $sum是一个聚合的操作符,另外的操作符你可以在官方文档中找到。上图中的命令表示对相同主键(_id)下的amount进行求和。如果你想要计算主键出现的次数,可以把命令写成如下的形式  {$sum: 1}

聚合的过程

看一下图例,所有的数据先经过$match命令,只留下了status为A的数据,接着,对筛选出的数据进行聚合操作,对相同cust_id的数据进行计算amount总和的操作,最后输出结果。

二、aggregate具体介绍

接受两个参数 pipeline/optionspipeline 是 array, 相同的 operator 可以多次使用

pipeline 支持的方法

  • $geoNear geoNear命令可以在查询结果中返回每个点距离查询点的距离
  • $group 指定 group 的 _id(key/keys) 和基于操作符($push/$sum/$addToSet/...) 的累加运算
  • $limit 限制条件
  • $match 输入过滤条件
  • $out 将输出结果保存到 collection
  • $project 修改数据流中的文档结构
  • $redact 是 $project/$match 功能的合并
  • $skip 跳过
  • $sort 对结果排序
  • $unwind 拆解数据

$group 允许用的累加操作符 $addToSet/$avg/$first/$last/$max/$min/$push/$sum,不被允许的累加操作符$each... ,默认最多可以用 100MB RAM, 增加allowDiskUse可以让$group操作更多的数据

下面是aggregate的用法

db.newtest.aggregate([
    {$match: {}},
    {$skip: 10}, // 跳过 collection 的前 10 行
    {$project: {group: 1, datetime: 1, category: 1, count: 1}},
    // 如果不选择 {count: 1} 最后的结果中 count_all/count_avg = 0
    {$redact: { // redact 简单用法 过滤 group != ‘A‘ 的行
        $cond: [{$eq: ["$group", "A"]}, "$$DESCEND", "$$PRUNE"]
    }},
    {$group: {
        _id: {year: {$year: "$datetime"}, month: {$month: "$datetime"}, day: {$dayOfMonth: "$datetime"}},
        group_unique: {$addToSet: "$group"},
        category_first: {$first: "$category"},
        category_last: {$last: "$category"},
        count_all: {$sum: "$count"},
        count_avg: {$avg: "$count"},
        rows: {$sum: 1}
    }},
    // 拆分 group_unique 如果开启这个选项, 会导致 _id 重复而无法写入 out 指定的 collection, 除非再 $group 一次
    // {$unwind: "$group_unique"},
    // 只保留这两个字段
    {$project: {group_unique: 1, rows: 1}},
    // 结果按照 _id 排序
    {$sort: {"_id": 1}},
    // 只保留 50 条结果
    // {$limit: 50},
    // 结果另存
    {$out: "data_agg_out"},
], {
    explain: true,
    allowDiskUse: true,
    cursor: {batchSize: 0}
})
db.data_agg_out.find()
db.data_agg_out.aggregate([
    {$group: {
        _id: null,
        rows: {$sum: ‘$rows‘}
    }}
])
db.data_agg_out.drop()
  • $match 聚合前数据筛选
  • $skip 跳过聚合前数据集的 n 行, 如果 {$skip: 10}, 最后 rows = 5000000 - 10
  • $project 之选择需要的字段, 除了 _id 之外其他的字段的值只能为 1
  • $redact 看了文档不明其实际使用场景, 这里只是简单筛选聚合前的数据
  • $group 指定各字段的累加方法
  • $unwind 拆分 array 字段的值, 这样会导致 _id 重复
  • $project 可重复使用多次 最后用来过滤想要存储的字段
  • $out 如果 $group/$project/$redact 的 _id 没有重复就不会报错
  • 以上方法中 $project/$redact/$group/$unwind 可以使用多次

二、group

group 比 aggregate 好的一个地方是 map/reduce 都支持用 function 定义, 下面是支持的选项

  • ns 如果用 db.runCommand({group: {}}) 方式调用, 需要 ns 指定 collection
  • cond 聚合前筛选
  • key 聚合的 key
  • initial 初始化 累加 结果
  • $reduce 接受 (curr, result) 参数, 将 curr 累加到 result
  • keyf 代替 key 用函数生成聚合用的主键
  • finalize 结果处理

需要保证输出结果小于 16MB 因为 group 没有提供转存选项

db.data.group({
    cond: {‘group‘: ‘A‘},
    // key: {‘group‘: 1, ‘category‘: 1},
    keyf: function(doc) {
        var dt = new Date(doc.created);
        // or
        // var dt = doc.datetime;
        return {
            year: doc.datetime.getFullYear(),
            month: doc.datetime.getMonth() + 1,
            day: doc.datetime.getDate()
        }
    },
    initial: {count: 0, category: []},
    $reduce: function(curr, result) {
        result.count += curr.count;
        if (result.category.indexOf(curr.category) == -1) {
            result.category.push(curr.category);
        }
    },
    finalize: function(result) {
        result.category = result.category.join();
    }
})

如果要求聚合大量数据, 就需要用到 mapReduce

三、mapReduce

  • query 聚合前筛选
  • sort 对聚合前的数据排序 用来优化 reduce
  • limit 限制进入 map 的数据
  • map(function) emit(key, value) 在函数中指定聚合的 K/V
  • reduce(function) 参数 (key, values) key 在 map 中定义了, values 是在这个 K 下的所有 V 数组
  • finalize 处理最后结果
  • out 结果转存 可以选择另外一个 db
  • scope 设置全局变量
  • jdMode(false) 是否(默认是)把 map/reduce 中间结果转为 BSON 格式, BSON 格式可以利用磁盘空间, 这样就可以处理大规模的数据集
  • verbose(true) 详细信息

如果设 jsMode 为 true 不进行 BSON 转换, 可以优化 reduce 的执行速度, 但是由于内存限制最大在 emit 数量小于 500,000 时使用

写 mapReduce 时需要注意

db.data.mapReduce(function() {
    var d = this.datetime;
    var key = {
        year: d.getFullYear(),
        month: d.getMonth() + 1,
        day: d.getDate(),
    };
    var value = {
        count: this.count,
        rows: 1,
        groups: [this.group],
    }
    emit(key, value);
}, function(key, vals) {
    var reducedVal = {
        count: 0,
        groups: [],
        rows: 0,
    };
    for(var i = 0; i < vals.length; i++) {
        var v = vals[i];
        reducedVal.count += v.count;
        reducedVal.rows += v.rows;
        for(var j = 0; j < v.groups.length; j ++) {
            if (reducedVal.groups.indexOf(v.groups[j]) == -1) {
                reducedVal.groups.push(v.groups[j]);
            }
        }
    }
    return reducedVal;
}, {
    query: {},
    sort: {datetime: 1},    // 需要索引 否则结果返回空
    limit: 50000,
    finalize: function(key, reducedVal) {
        reducedVal.avg = reducedVal.count / reducedVal.rows;
        return reducedVal;
    },
    out: {
        inline: 1,
        // replace: "",
        // merge: "",
        // reduce: "",
    },
    scope: {},
    jsMode: true
})

测试数据:

> db.newtest.find()
{ "_id" : ObjectId("5a2544352ba57ccba824d7bf"), "group" : "E", "created" : 1402764223, "count" : 63, "datetime" : 1512391126, "title" : "aa", "category" : "C8" }
{ "_id" : ObjectId("5a2544512ba57ccba824d7c0"), "group" : "I", "created" : 1413086660, "count" : 93, "datetime" : 1512391261, "title" : "bb", "category" : "C10" }
{ "_id" : ObjectId("5a2544562ba57ccba824d7c1"), "group" : "H", "created" : 1440750343, "count" : 41, "datetime" : 1512391111, "title" : "cc", "category" : "C1" }
{ "_id" : ObjectId("5a2544562ba57ccba824d7c2"), "group" : "S", "created" : 1437710373, "count" : 14, "datetime" : 1512392136, "title" : "dd", "category" : "C10" }
{ "_id" : ObjectId("5a2544562ba57ccba824d7c3"), "group" : "Z", "created" : 1428307315, "count" : 78, "datetime" : 1512391166, "title" : "ee", "category" : "C5" }
{ "_id" : ObjectId("5a2544562ba57ccba824d7c4"), "group" : "R", "created" : 1402809274, "count" : 74, "datetime" : 1512391162, "title" : "ff", "category" : "C9" }
{ "_id" : ObjectId("5a2544562ba57ccba824d7c5"), "group" : "Y", "created" : 1400571321, "count" : 66, "datetime" : 1512139164, "title" : "gg", "category" : "C2" }
{ "_id" : ObjectId("5a2544562ba57ccba824d7c6"), "group" : "L", "created" : 1416562128, "count" : 5, "datetime" : 1512393165, "title" : "hh", "category" : "C1" }
{ "_id" : ObjectId("5a2544562ba57ccba824d7c7"), "group" : "E", "created" : 1414057884, "count" : 12, "datetime" : 1512391165, "title" : "ii", "category" : "C3" }
{ "_id" : ObjectId("5a2544572ba57ccba824d7c8"), "group" : "L", "created" : 1418879346, "count" : 67, "datetime" : 1512391167, "title" : "gg", "category" : "C3" }

四、总结

method allowDiskUse out function
aggregate true pipeline/collection false
group false pipeline true
mapReduce jsMode pipeline/collection true
  • aggregate 基于累加操作的的聚合 可以重复利用 $project/$group 一层一层聚合数据, 可以用于大量数据(单输出结果小于 16MB) 不可用于分片数据
  • mapReduce 可以处理超大数据集 需要严格遵守 mapReduce 中的结构一致/幂等 写法, 可增量输出/合并, 见 out options
  • group RDB 中的 group by 简单需求可用(只有 inline 输出) 会产生 read lock
时间: 2024-11-06 16:16:27

MongoDB中聚合工具Aggregate等的介绍与使用的相关文章

MongoDB中4种日志的详细介绍

前言 任何一种数据库都有各种各样的日志,MongoDB也不例外.MongoDB中有4种日志,分别是系统日志.Journal日志.oplog主从日志.慢查询日志等.这些日志记录着MongoDB数据库不同方面的踪迹.下面分别介绍这几种日志. 系统日志 系统日志在MongoDB数据库中很重要,它记录着MongoDB启动和停止的操作,以及服务器在运行过程中发生的任何异常信息. 配置系统日志的方法比较简单,在启动mongod时指定logpath参数即可 ? 1 mongod -logpath=/data/

Mongodb的聚合和管道

MongoDB 聚合 MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果. aggregate() 方法 MongoDB中聚合的方法使用aggregate(). 语法 aggregate() 方法的基本语法格式如下所示: >db.COLLECTION_NAME.aggregate(AGGREGATE_OPERATION) 注:参数AGGREGATE_OPERATION可以是一个对象(单个处理),也可以是多个对象的数组(管道处理). >

【翻译】MongoDB指南/聚合——聚合管道

[原文地址]https://docs.mongodb.com/manual/ 聚合 聚合操作处理数据记录并返回计算后的结果.聚合操作将多个文档分组,并能对已分组的数据执行一系列操作而返回单一结果.MongoDB提供了三种执行聚合的方式:聚合管道,map-reduce方法和单一目的聚合操作. 聚合管道 MongoDB的聚合框架模型建立在数据处理管道这一概念的基础之上.文档进入多阶段管道中,管道将文档转换为聚合结果.最基本的管道阶段类似于查询过滤器和修改输出文档形式的文档转换器. 其他的管道为分组和

【MongoDB】MongoDB之聚合框架(一)

题记: 还有3天2014年结束了,这个月的计划除了总结Mongodb外其他计划都已经完成了.最近由于懒惰对于mongodb的研究暂停了好长时间.在最后的三天里,对于mongodb的研究做以总结和梳理: 一.基本概念 对于聚合框架,我在官方文档(http://docs.mongodb.org/manual/core/aggregation-introduction/)找到对它的介绍.翻译大概意思如下: 聚合是处理数据记录并且返回计算结果的操作.mongodb提供了一组强大针对数据集合进行检查和计算

Mongodb中数据聚合之聚合管道aggregate

在之前的两篇文章<Mongodb中数据聚合之基本聚合函数count.distinct.group>和<Mongodb中数据聚合之MapReduce>中,我们已经对数据聚合提供了两种实现方式,今天,在这篇文章中,我们讲讲在Mongodb中的另外一种数据聚合实现方式--聚合管道aggregate. 面对着广大用户对数据统计的需求,Mongodb从2.2版本之后便引入了新的功能聚合框架(aggregation framework),它是数据聚合的新框架,这个概念类似于数据处理中的管道.每

MongoDB中的聚合操作

根据MongoDB的文档描述,在MongoDB的聚合操作中,有以下五个聚合命令. 其中,count.distinct和group会提供很基本的功能,至于其他的高级聚合功能(sum.average.max.min),就需要通过mapReduce来实现了. 在MongoDB2.2版本以后,引入了新的聚合框架(聚合管道,aggregation pipeline ,使用aggregate命令),是一种基于管道概念的数据聚合操作. Name Description count Counts the num

【实战】使用 Kettle 工具将 mysql 数据增量导入到 MongoDB 中

最近有一个将 mysql 数据导入到 MongoDB 中的需求,打算使用 Kettle 工具实现.本文章记录了数据导入从0到1的过程,最终实现了每秒钟快速导入约 1200 条数据.一起来看吧~ 一.Kettle 连接图 简单说下该转换流程,增量导入数据: 1)根据 source 和 db 字段来获取 MongoDB 集合内 business_time 最大值. 2)设置 mysql 语句 3)对查询的字段进行改名 4)过滤数据:只往 MongoDB 里面导入 person_id,address,

Mongodb中数据聚合之基本聚合函数count、distinct、group

在之前的文章<Mongodb中数据聚合之MapReduce>中,我们提到过Mongodb中进行数据聚合操作的一种方式--MapReduce,但是在大多数日常使用过程中,我们并不需要使用MapReduce来进行操作,不然有点杀鸡用牛刀的感觉,在这边文章中,我们就简单说说用自带的聚合函数进行数据聚合操作的实现. Mongodb中自带的基本聚合函数有三种:count.distinct和group.下面我们分别来讲述一下这三个基本聚合函数. (1)count 作用:简单统计集合中符合某种条件的文档数量

在MongoDB中实现聚合函数

在MongoDB中实现聚合函数 随着组织产生的数据爆炸性增长,从GB到TB,从TB到PB,传统的数据库已经无法通过垂直扩展来管理如此之大数据.传统方法存储和处理数据的成本将会随着数据量增长而显著增加.这使得很多组织都在寻找一种经济的解决方案,比如NoSQL数据库,它提供了所需的数据存储和处理能力.扩展性和成本效率.NoSQL数据库不使用SQL作为查询语言.这种数据库有多种不同的类型,比如文档结构存储.键值结构存储.图结构.对象数据库等等. 我们在本文中使用的NoSQL是MongoDB,它是一种开