cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training 听课笔记

(没太听明白,以后再听)

1. 如何欺骗神经网络?

  这部分研究最开始是想探究神经网络到底是如何工作的。结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案。比如下图,左边的熊猫被识别成熊猫,但是加上中间的小“噪音”一样的数值,右图的熊猫就识别不出来了。而且这个小“噪音”不是随机的,它更像是offset,是某种系统误差,叠加到图片上去,总是可以欺骗神经网络。

2. 神经网络从权重到输出的映射是非线性的,非常复杂,非常难优化、训练。但是从输入到输出的映射可以看成线性的,是可以预测的,优化出输入要比优化出权重容易得多。可以利用输入到输出的线性关系,很方便地生成可以欺骗(或者叫攻击)神经网络的样例。

  FGSM (Fast Gradient Step Method):一种对抗方法。这个方法的核心思想是在每一步优化的过程中加入少量噪声,让预测结果朝目标类别偏移,或者如你所愿远离正确的类别。

  Transferability Attack:在自己的网络上找到攻击样例,这个样例往往也能攻破其他神经网络。

3. 对抗样例可以用来训练网络得到更好的效果。

4. 总结

时间: 2024-08-30 16:46:40

cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training 听课笔记的相关文章

cs231n spring 2017 lecture9 听课笔记

参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的shape:对于卷积层,输出的边长 =(输入的边长 - filter的边长)/ 步长 + 1,输出的通道数等于filter的数量.每个filter的通道数等于输入的通道数.卷积层的参数 = filter的长 * filter的宽 * 输入的通道数 * filter的数量.池化层没有需要学习的参数. 图中分成两个通

cs231n spring 2017 lecture7 听课笔记

1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很大的loss function,一个方向梯度变化明显,另一个方向梯度变化很缓慢,SGD在优化过程中会震荡着下降,导致优化很慢.深度学习的网络会有上百万甚至更多的参数需要优化,在这个上百万维的空间里,更容易出现各个维度梯度变化差别很大的问题. 2)陷落在局部最小点或者鞍点(saddle point).

cs231n spring 2017 lecture11 听课笔记

1. Semantic Segmentation 把每个像素分类到某个语义. 为了减少运算量,会先降采样再升采样.降采样一般用池化层,升采样有各种"Unpooling"."Transpose Convolution"(文献中也叫"Upconvolution"之类的其他名字). 这个问题的训练数据的获得非常昂贵,因为需要一个像素一个像素的贴标签. 2. Classification + Localizatoin 一般用同一个网络,一方面得出分类,一

cs231n spring 2017 lecture8 听课笔记

1. CPU vs. GPU: CPU核心少(几个),更擅长串行任务.GPU有很多核心(几千个),每一个核都弱,有自己的内存(几个G),很适合并行任务.GPU最典型的应用是矩阵运算. GPU编程:1)CUDA,只能在英伟达:2)OpenCL类似CUDA,好处是可以跑在任何平台上,但相对慢一些.深度学习可以直接调用现成的库,不用自己写CUDA代码. 用cuDNN比不用快几倍. 深度学习的瓶颈可能不在GPU的运算,而在GPU和数据的通信上,解决办法是:1)把数据读入RAM:2)用SSD而不是HDD:

cs231n spring 2017 lecture12 听课笔记

这一节课很零碎. 1. 神经网络到底在干嘛? 浅层的是具体的特征(比如边.角.色块等),高层的更抽象,最后的全连接层是把图片编码成一维向量然后和每一类标签作比较.如果直接把图片和标签做像素级的最近领域分类,误差很大,但是转成编码之后就准多了. 可以用PCA可视化最后一层的特征,深度学习领域更高阶的做法是用t-SNE(Van der Maaten and Hinton, "Visualizting Data using t-SNE", JMLR 2008). 可视化非线性函数的激活值也可

cs231n spring 2017 lecture15 Efficient Methods and Hardware for Deep Learning 听课笔记

1. 深度学习面临的问题: 1)模型越来越大,很难在移动端部署,也很难网络更新. 2)训练时间越来越长,限制了研究人员的产量. 3)耗能太多,硬件成本昂贵. 解决的方法:联合设计算法和硬件. 计算硬件可以分为通用和专用两大类.通用硬件又可以分为CPU和GPU.专用硬件可以分为(FPGA和ASIC,ASIC更高效,谷歌的TPU就是ASIC). 2. Algorithms for Efficient Inference 1)Pruning,修剪掉不那么重要的神经元和连接.第一步,用原始的网络训练:第

[Paper Review]EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES,2015

Early attempts at explaining this phenomenon focused on nonlinearity and overfitting. We argue instead that the primary cause of neural networks’ vulnerability to adversarial perturbation is their linear nature. Linear behavior in high-dimensional sp

CS231n: Convolutional Neural Networks for Visual Recognition - Spring 2017

喜大普奔!!!!! CS231n 2017新鲜出炉啦!!!!! 课程主页:http://cs231n.stanford.edu/ 有讲义,有教案,有讲座,更重要的是--还有官方授课视频!!!!!意不意外?惊不惊喜?开不开心???!!!

Probabilistic Graphical Models 10-708, Spring 2017

https://www.cs.cmu.edu/~epxing/Class/10708-17/slides/lecture1-Introduction.pdf Computational and CS orientated => DK and NF's book Statistical and easier one => Jordan's book MLAPP => also a good book HWs => Theory, algorithm design and implem