异常检测概览——孤立森林和局部异常因子算法效果是最好的

转自博客:http://www.infosec-wiki.com/?p=140760

一、关于异常检测

异常检测(outlier detection)在以下场景:

  • 数据预处理
  • 病毒木马检测
  • 工业制造产品检测
  • 网络流量检测

等,有着重要的作用。由于在以上场景中,异常的数据量都是很少的一部分,因此诸如:SVM、逻辑回归等分类算法,都不适用,因为:

监督学习算法适用于有大量的正向样本,也有大量的负向样本,有足够的样本让算法去学习其特征,且未来新出现的样本与训练样本分布一致。

以下是异常检测和监督学习相关算法的适用范围:

异常检测:信用卡诈骗、制造业产品异常检测、数据中心机器异常检测、入侵检测

监督学习:垃圾邮件识别、新闻分类

二、异常检测算法

1. 基于统计与数据分布

假设数据集应满足正态分布(Normal Distribution),即:

分布的平均值为μ和方差为σ2 。

当满足上图训练数据的正态分布,如果x的值大于4或者小于-4,都可以认为是异常值。

以下以“600680”股票成交量为例:

import tushare
from matplotlib import pyplot as plt

df = tushare.get_hist_data("600680")
v = df[-90: ].volume
v.plot("kde")
plt.show()

近三个月,成交量大于200000就可以认为发生了异常(天量,嗯,要注意风险了……)

算法示例:

2. 箱线图分析

箱线图,不做过多说明了:

import tushare
from matplotlib import pyplot as plt

df = tushare.get_hist_data("600680")
v = df[-90: ].volume
v.plot("kde")
plt.show()

图:

import tushare
from matplotlib import pyplot as plt

df = tushare.get_hist_data("600680")
v = df[-90: ].volume
v.plot("kde")
plt.show()

大体可以知道,该股票在成交量少于20000,或者成交量大于80000,就应该提高警惕啦!

3. 基于距离/密度

典型的算法是:“局部异常因子算法-Local Outlier Factor”,该算法通过引入“k-distance,第k距离”、“k-distance neighborhood,第k距离邻域”、“reach-distance,可达距离”、以及“local reachability density,局部可达密度 ”和“local outlier factor,局部离群因子”,来发现异常点,详情可参考:异常点/离群点检测算法--LOF - wangyibo0201的博客 - 博客频道 - CSDN.NET

4. 基于划分思想

典型的算法是 “孤立森林,Isolation Forest”,其思想是:

假设我们用一个随机超平面来切割(split)数据空间(data space), 切一次可以生成两个子空间(想象拿刀切蛋糕一分为二)。之后我们再继续用一个随机超平面来切割每个子空间,循环下去,直到每子空间里面只有一个数据点为止。直观上来讲,我们可以发现那些密度很高的簇是可以被切很多次才会停止切割,但是那些密度很低的点很容易很早的就停到一个子空间了。

这个的算法流程即是使用超平面分割子空间,然后建立类似的二叉树的过程:

详情见:

iForest (Isolation Forest)孤立森林 异常检测 入门篇IsolationForest example

示例代码:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import IsolationForest

rng = np.random.RandomState(42)

# Generate train data
X = 0.3 * rng.randn(100, 2)
X_train = np.r_[X + 1, X - 3, X - 5, X + 6]
# Generate some regular novel observations
X = 0.3 * rng.randn(20, 2)
X_test = np.r_[X + 1, X - 3, X - 5, X + 6]
# Generate some abnormal novel observations
X_outliers = rng.uniform(low=-8, high=8, size=(20, 2))

# fit the model
clf = IsolationForest(max_samples=100*2, random_state=rng)
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)
y_pred_outliers = clf.predict(X_outliers)

# plot the line, the samples, and the nearest vectors to the plane
xx, yy = np.meshgrid(np.linspace(-8, 8, 50), np.linspace(-8, 8, 50))
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plt.title("IsolationForest")
plt.contourf(xx, yy, Z, cmap=plt.cm.Blues_r)

b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c=‘white‘)
b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c=‘green‘)
c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c=‘red‘)
plt.axis(‘tight‘)
plt.xlim((-8, 8))
plt.ylim((-8, 8))
plt.legend([b1, b2, c],
           ["training observations",
            "new regular observations", "new abnormal observations"],
           loc="upper left")
plt.show()

结果如下,其中:红色即为异常点,白色是训练集,绿色是测试数据

注意:孤立森林不适用于特别高维的数据。由于每次切数据空间都是随机选取一个维度,建完树后仍然有大量的维度信息没有被使用,导致算法可靠性降低。高维空间还可能存在大量噪音维度或无关维度(irrelevant

attributes),影响树的构建。孤立森林算法具有线性时间复杂度。因为是ensemble的方法,所以可以用在含有海量数据的数据集上面。通常树的数量越多,算法越稳定。由于每棵树都是互相独立生成的,因此可以部署在大规模分布式系统上来加速运算。

5. 其他算法

包括:One-class SVM 以及 Elliptic Envelope 等。

参考:2.7. Novelty and Outlier Detection

6. 值得一提

这些算法里面,孤立森林和局部异常因子算法相比之下,效果是最好的。

文章参考资料:

Isolation ForestLOF – Identifying Density-Based Local Outlierskamidox.com异常检测(anomaly detection)如何在Python中实现这五类强大的概率分布 - Python - 伯乐在线博客频道 - CSDN.NET2.7. Novelty and Outlier DetectioniForest (Isolation Forest)孤立森林 异常检测 入门篇异常点检测算法(一)
异常值检测算法(二)
异常点检测算法(三)
异常点检测算法综述

时间: 2024-08-30 03:21:44

异常检测概览——孤立森林和局部异常因子算法效果是最好的的相关文章

异常检测 | 使用孤立森林 sklearn.ensemble.IsolationForest 分析异常流量

孤立森林 Isolation Forest(sklearn.ensemble.IsolationForest):一种适用于 连续数据 的 无监督 异常检测方法.与随机森林类似,都是高效的集成算法,相较于LOF,K-means等传统算法,该算法鲁棒性高且对数据集的分布无假设. Isolation Forest算法做非监督式的异常点检测分析,对数据特征的要求宽松: 该算法对特征的要求低,不需要做离散化,不需要数值标准化 不需要考虑特征间的关系(例如共线性)等,不需要额外做特征过滤和筛选 附:SKle

如何开发一个异常检测系统:如何评价一个异常检测算法

利用数值来评价一个异常检测算法的重要性 使用实数评价法很重要,当你用某个算法来开发一个具体的机器学习应用时,你常常需要做出很多决定,如选择什么样的特征等等,如果你能找到如何来评价算法,直接返回一个实数来告诉你算法的好坏,那样你做决定就会更容易一些.如现在有一个特征,要不要将这个特征考虑进来?如果你带上这个特征运行你的算法,再去掉这个特征运行你的算法,得到返回的实数,这个实数直接告诉你加上这个特征算法是变好了还是变坏了,这样你就有一种更简单的算法来确定是否要加上这个特征. 为了更快地开发出一个异常

异常检测(2)——基于概率统计的异常检测(1)

某个工厂生产了一批手机屏幕,为了评判手机屏幕的质量是否达到标准,质检员需要收集每个样本的若干项指标,比如大小.质量.光泽度等,根据这些指标进行打分,最后判断是否合格.现在为了提高效率,工厂决定使用智能检测进行第一步筛选,质检员只需要重点检测被系统判定为“不合格”的样本. 智能检测程序需要根据大量样本训练一个函数模型,也许我们的第一个想法是像监督学习那样,为样本打上“正常”和“异常”的标签,然后通过分类算法训练模型.假设xtest是数据样本,predict(xtest)来判断xtest是否是合格样

异常检测及欺诈

一.无监督异常检测模型   1.在线流数据异常检测(iforest隔离森林算法) 该方法的主要思想是,通过随机选定样本属性及其值将样本空间进行随机划分,分割的过程可以看成类似于随机森林中树建立的过程,对于新的样本,基于建立的隔离树求其分割深度,深度值越小,表明越容易被隔离,也就意味着异常的概率越大:反之则为正常样本.该方法是基于异常数据"少且不同"的特征,来采用随机隔离的思想设计异常检查. 该方法的主要优点是,在构建初始模型时不需要任何实际的数据,从而能快速构建初始探测模型,它符合数据

【R笔记】使用R语言进行异常检测

本文转载自cador<使用R语言进行异常检测> 本文结合R语言,展示了异常检测的案例,主要内容如下: (1)单变量的异常检测 (2)使用LOF(local outlier factor,局部异常因子)进行异常检测 (3)通过聚类进行异常检测 (4)对时间序列进行异常检测 一.单变量异常检测 本部分展示了一个单变量异常检测的例子,并且演示了如何将这种方法应用在多元数据上.在该例中,单变量异常检测通过boxplot.stats()函数实现,并且返回产生箱线图的统计量.在返回的结果中,有一个部分是o

异常检测

异常检测: 判断测试集是否异常.如下例中对飞机引擎的判断: 我们建立评估模型概率模型p(x)来判断,如果p(x)<ε异常,反之正常 用处举例:购物网站用户异常检测,计算机集群异常检测

异常检测(anomaly detection)

异常检测(anomaly detection) 关于异常检测(anomaly detection)本文主要介绍一下几个方面: 异常检测定义及应用领域 常见的异常检测算法 高斯分布(正态分布) 异常检测算法 评估异常检测算法 异常检测VS监督学习 如何设计选择features 多元高斯分布 多元高斯分布在异常检测上的应用 一.异常检测定义及应用领域 先来看什么是异常检测?所谓异常检测就是发现与大部分对象不同的对象,其实就是发现离群点.异常检测有时也称偏差检测.异常对象是相对罕见的.下面来举一些常见

ng机器学习视频笔记(十三) ——异常检测与高斯密度估计

ng机器学习视频笔记(十三) --异常检测与高斯密度估计 (转载请附上本文链接--linhxx) 一.概述 异常检测(anomaly detection),主要用于检查对于某些场景下,是否存在异常内容.异常操作.异常状态等.异常检测,用到了一个密度估计算法(density estimation)--高斯分布(Gaussian distribution),又称正态分布(normal distribution). 该算法只用到了样本的特征值,不需要分类标签,故该算法是无监督学习算法 主要内容是,对于

《时序异常检测算法概览》

时序异常检测算法概览 2018-09-03 17:08:49 分类:人工智能与大数据 来自:论智(微信号:jqr_AI),作者:Pavel Tiunov,编译:weakish来源:statsbot,原文链接 编者按:Statsbot CTO Pavel Tiunov简要介绍了最流行的时序异常检测算法,并讨论了它们的优点和缺点 在Statsbot,我们持续检查异常检测方法这一领域的研究,并据此更新我们的模型. 本文概览了最流行的时序异常检测算法,并讨论了它们的优点和缺点. 本文是为想要了解异常检测