POJ2253——Frogger(Floyd变形)

Frogger

Description
Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists‘ sunscreen, he wants to avoid swimming and instead reach her by jumping.
Unfortunately Fiona‘s stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps.
To execute a given sequence of jumps, a frog‘s jump range obviously must be at least as long as the longest jump occuring in the sequence.
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.
You are given the coordinates of Freddy‘s stone, Fiona‘s stone and all other stones in the lake. Your job is to compute the frog distance between Freddy‘s and Fiona‘s stone.
Input
The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy‘s stone, stone #2 is Fiona‘s stone, the other n-2 stones are unoccupied. There‘s a blank line following each test case. Input is terminated by a value of zero (0) for n.
Output
For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.
Sample Input
2
0 0
3 4
3
17 4
19 4
18 5
0
Sample Output
Scenario #1
Frog Distance = 5.000
Scenario #2
Frog Distance = 1.414

题目大意:

    一只小青蛙想要去见另外一只小青蛙。他在一块石头上,她在另外一块石头上。由于河水污染严重,他每次在河水中待的时间不能太长。

    有N块石头,他在N1上,她在N2上,选择最合适的路线,使他每次在河水中停留的时间最短。

结题思路:

    Floyd变形。

核心代码:

1 if (edge[i][j]>edge[i][m]&&edge[i][j]>edge[m][j])
2     edge[i][j]=max(edge[i][m],edge[m][j]);

Edge里面存的当前路径中最大的停留时间。

Code:

 1 #include<stdio.h>
 2 #include<iostream>
 3 #include<algorithm>
 4 #include<math.h>
 5 #define MAXN 1000
 6 using namespace std;
 7 struct point
 8 {
 9     double x,y;
10 } P[MAXN+10];
11 double edge[MAXN+10][MAXN+10];
12 double dis2p(struct point a,struct point b)
13 {
14     return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
15 }
16 double max(double a,double b)
17 {
18     return a>b?a:b;
19 }
20 int main()
21 {
22     int N,times=0;
23     while (cin>>N)
24     {
25         times++;
26         if (N==0) break;
27         for (int i=1; i<=N; i++)
28             cin>>P[i].x>>P[i].y;
29         for (int i=1; i<=N; i++)
30             for (int j=1; j<=N; j++)
31                 edge[i][j]=dis2p(P[i],P[j]);
32         for (int m=1; m<=N; m++)
33             for (int i=1; i<=N; i++)
34                 for (int j=1; j<=N; j++)
35                 {
36                     //if (j==i) continue;
37                     //if (m==j||m==i) continue;
38                     if (edge[i][j]>edge[i][m]&&edge[i][j]>edge[m][j])
39                         edge[i][j]=max(edge[i][m],edge[m][j]);
40                 }
41         printf("Scenario #%d\n",times);
42         printf("Frog Distance = %.3lf\n\n",edge[1][2]);
43     }
44     return 0;
45 }

POJ2253——Frogger(Floyd变形)

时间: 2024-10-09 12:33:06

POJ2253——Frogger(Floyd变形)的相关文章

poj2253 Frogger(Floyd)

题目链接 http://poj.org/problem?id=2253 题意 给出青蛙A,B和若干石头的坐标,现在青蛙A要跳到青蛙B所在的石头上,求出所有路径中最远那一跳的最小值. 思路 Floyd算法的变形,将求两点之间的最短路改成求两点之间最大边权的最小值即可. 代码 1 #include <algorithm> 2 #include <iostream> 3 #include <cstring> 4 #include <cstdio> 5 #inclu

POJ2253 Frogger 【Floyd】

讲的是,一只雄青蛙要从一个石头到另外一个石头上去找某只雌青蛙,但是这两个石头隔得太远,青蛙跳不过去,所幸,湖面上还有很多其他石头,所以青蛙可以借助别的石头一步一步地跳向那只雌青蛙所在的石头.显然青蛙可能有多种路径,比如其中一条是 2,3,4,2,1 ,它跳了五次,数字代表每次跳的距离也就是路径上相邻两个石头之间的距离,那么这只青蛙的弹跳能力至少是4才能跳过去.在其他的路径中,可能要求青蛙的弹跳是5,是8,是1,是100,等等,这个问题求青蛙需要的最小弹跳能力.其实也就是个最大值中取最小的问题.

poj2253 Frogger(最短路变型或者最小生成树)

1 /* 2 题意:就是源点到终点有多条的路径,每一条路径中都有一段最大的距离! 3 求这些路径中最大距离的最小值! 4 5 Dijkstra, Floyd, spfa都是可以的!只不过是将松弛的条件变一下就行了! 6 7 想了一下,这道题用最小生成树做也可以啊,图总是连通的嘛!所以建一棵最小 8 生成树,然后dfs一下,从源点1,到终点2的路径上,查找边长最大的路径! 9 附上代码..... 10 */ 11 #include<iostream> 12 #include<cstdio&

hdu 1596(Floyd 变形)

http://acm.hdu.edu.cn/showproblem.php?pid=1596 find the safest road Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 6911    Accepted Submission(s): 2450 Problem Description XX星球有很多城市,每个城市之间有一条或

hdu 1217 (Floyd变形)

链接:http://acm.hdu.edu.cn/showproblem.php?pid=1217 Arbitrage Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 4430    Accepted Submission(s): 2013 Problem Description Arbitrage is the use of discr

poj 2253 Frogger(floyd变形)

题目链接:http://poj.org/problem?id=1797 题意:给出两只青蛙的坐标A.B,和其他的n-2个坐标,任一两个坐标点间都是双向连通的.显然从A到B存在至少一条的通路,每一条通路的元素都是这条通路中前后两个点的距离,这些距离中又有一个最大距离.现在要求求出所有通路的最大距离,并把这些最大距离作比较,把最小的一个最大距离作为青蛙的最小跳远距离. 有一个明显的方法就是dfs一遍但是肯定会te,所以可以考虑一下用dp的思想. 类似记忆化搜索的思想,由于数据比较小所以不用记忆化搜索

POJ2253 Frogger —— 最短路变形

题目链接:http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 49409   Accepted: 15729 Description Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on a

POJ 2253 - Frogger (floyd)

A - Frogger Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Status Description Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to

AtCoder Beginner Contest 074 D - Restoring Road Network(Floyd变形)

题目链接:点我点我 题意:给出一个最短路的图,询问是否正确,如果正确的话,输出遍历所有点的最短路径和. 题解:判断是否正确的,直接再一次Floyd,判断是否会有A[i][k]+A[k][j]<A[i][j](通过中间点k使得两点间距离更短),如果有的话,直接输出-1. 要遍历到所有道路,并且路径和最小,我们可以尽可能用用中间点的路径(A[i][k]+A[k][j]==A[i][j]),这样本来遍历两个点,就可以遍历3个点了, 最后加的时候记得不要从重复加,从最小点往后加,不要再往前加,不然就重复