欧拉计划(python) problem 27

Quadratic primes

Problem 27

Euler discovered the remarkable quadratic formula:

n2 + n + 41

It turns out that the formula will produce 40 primes for the consecutive values n = 0 to 39. However, when n = 40, 402 + 40 + 41 = 40(40 + 1) + 41 is divisible by 41, and certainly when n = 41, 412 + 41 + 41 is clearly
divisible by 41.

The incredible formula  n2 ? 79n + 1601 was discovered, which produces 80 primes for the consecutive values n = 0 to 79. The product of the coefficients, ?79 and 1601, is ?126479.

Considering quadratics of the form:

n2 + an + b, where |a| < 1000 and |b| < 1000

where |n| is the modulus/absolute value of n

e.g. |11| = 11 and |?4| = 4

Find the product of the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n = 0.


Answer:
-59231
Completed on Wed, 17 Jun 2015, 12:33

python code:

import math
def IsPrime(x):
    if x<3:
        return False
    for i in range(2,int(math.sqrt(x))+1):
        if x%i==0:
            return False
    return True

def func(a,b):
    k=0
    while True:
        if IsPrime(k*k+a*k+b):
            k+=1
        else:
            break
    return k-1

maxa,maxb=0,0
num=0
for j in range(-999,1000):
    if IsPrime(j):
        for i in range(-999,1000):
            temp=func(i,j)
            if temp>num:
                num=temp
                maxa,maxb=i,j
print(maxa*maxb)

time : 3s

时间: 2024-12-25 03:23:00

欧拉计划(python) problem 27的相关文章

欧拉计划(python) problem 29

Distinct powers Problem 29 Consider all integer combinations of ab for 2 ≤ a ≤ 5 and 2 ≤ b ≤ 5: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, 35=243 42=16, 43=64, 44=256, 45=1024 52=25, 53=125, 54=625, 55=3125 If they are then placed in numerical orde

欧拉计划(python) problem 65

Convergents of e Problem 65 The square root of 2 can be written as an infinite continued fraction. √2 = 1 + 1   2 + 1     2 + 1       2 + 1         2 + ... The infinite continued fraction can be written, √2 = [1;(2)], (2) indicates that 2 repeats ad

欧拉计划(python) problem 20

Factorial digit sum Problem 20 n! means n × (n ? 1) × ... × 3 × 2 × 1 For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800, and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27. Find the sum of the digits in the number 100!

欧拉计划(python) problem 13

Large sum Problem 13 Work out the first ten digits of the sum of the following one-hundred 50-digit numbers. 37107287533902102798797998220837590246510135740250 46376937677490009712648124896970078050417018260538 743249861995247410594742333095130581237

欧拉计划(python) problem 18

Maximum path sum I Problem 18 By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23. 3 7 4 2 4 6 8 5 9 3 That is, 3 + 7 + 4 + 9 = 23. Find the maximum total from top t

欧拉计划(python) problem 15

Lattice paths Problem 15 Starting in the top left corner of a 2×2 grid, and only being able to move to the right and down, there are exactly 6 routes to the bottom right corner. How many such routes are there through a 20×20 grid? Answer: 13784652882

欧拉计划(python) problem 1

problem 1 If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below 1000. python code: k3=0; k5=0; result=0; for i in range(1,10

欧拉计划(python) problem 5

Smallest multiple Problem 5 2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder. What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20? python code : imp

欧拉计划(python) problem 7

10001st prime Problem 7 By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. What is the 10 001st prime number? python code : import math sqrt=math.sqrt def func(x): k=int(sqrt(x))+1 for i in range(2,k)