乐观锁介绍

乐观锁( Optimistic Locking ) 相对悲观锁而言,乐观锁机制采取了更加宽松的加锁机制。悲观锁大多数情况下依靠数据库的锁机制实现,以保证操作最大程度的独占性。但随之而来的就是数据库性能的大量开销,特别是对长事务而言,这样的开销往往无法承受。而乐观锁机制在一定程度上解决了这个问题。乐观锁,大多是基于数据版本( Version )记录机制实现。何谓数据版本?即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是通过为数据库表增加一个 “version” 字段来实现。读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提交数据的版本数据与数据库表对应记录的当前版本信息进行比对,如果提交的数据版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。

示例

如一个金融系统,当某个操作员读取用户的数据,并在读出的用户数据的基础上进行修改时(如更改用户帐户余额),如果采用悲观锁机制,也就意味着整个操作过 程中(从操作员读出数据、开始修改直至提交修改结果的全过程,甚至还包括操作 员中途去煮咖啡的时间),数据库记录始终处于加锁状态,可以想见,如果面对几百上千个并发,这样的情况将导致怎样的后果。

乐观锁机制在一定程度上解决了这个问题。乐观锁,大多是基于数据版本 ( Version )记录机制实现。何谓数据版本?即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是通过为数据库表增加一个 “version” 字段来实现。

读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提交数据的版本数据与数据库表对应记录的当前版本信息进行比对,如果提交的数据版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。

对于上面修改用户帐户信息的例子而言,假设数据库中帐户信息表中有一个 version 字段,当前值为 1 ;而当前帐户余额字段( balance )为 $100 。

1 操作员 A 此时将其读出( version=1 ),并从其帐户余额中扣除 $50( $100-$50 )。

2 在操作员 A 操作的过程中,操作员B 也读入此用户信息( version=1 ),并从其帐户余额中扣除 $20 ( $100-$20 )。

3 操作员 A 完成了修改工作,将数据版本号加一( version=2 ),连同帐户扣除后余额( balance=$50 ),提交至数据库更新,此时由于提交数据版本大于数据库记录当前版本,数据被更新,数据库记录 version 更新为 2 。

4 操作员 B 完成了操作,也将版本号加一( version=2 )试图向数据库提交数据( balance=$80 ),但此时比对数据库记录版本时发现,操作员 B 提交的数据版本号为 2 ,数据库记录当前版本也为 2 ,不满足 “ 提交版本必须大于记录当前版本才能执行更新 “ 的乐观锁策略,因此,操作员 B 的提交被驳回。

这样,就避免了操作员 B 用基于 version=1 的旧数据修改的结果覆盖操作员A 的操作结果的可能。

优点

从上面的例子可以看出,乐观锁机制避免了长事务中的数据库加锁开销(操作员 A和操作员 B 操作过程中,都没有对数据库数据加锁),大大提升了大并发量下的系统整体性能表现。

缺点

需要注意的是,乐观锁机制往往基于系统中的数据存储逻辑,因此也具备一定的局限性,如在上例中,由于乐观锁机制是在我们的系统中实现,来自外部系统的用户余额更新操作不受我们系统的控制,因此可能会造成脏数据被更新到数据库中。在系统设计阶段,我们应该充分考虑到这些情况出现的可能性,并进行相应调整(如将乐观锁策略在数据库存储过程中实现,对外只开放基于此存储过程的数据更新途径,而不是将数据库表直接对外公开)。

时间: 2024-10-16 06:42:16

乐观锁介绍的相关文章

mysql乐观锁总结和实践(转载)

原文地址:http://chenzhou123520.iteye.com/blog/1863407 乐观锁介绍: 乐观锁( Optimistic Locking ) 相对悲观锁而言,乐观锁假设认为数据一般情况下不会造成冲突,所以在数据进行提交更新的时候,才会正式对数据的冲突与否进行检测,如果发现冲突了,则让返回用户错误的信息,让用户决定如何去做.那么我们如何实现乐观锁呢,一般来说有以下2种方式: 1.使用数据版本(Version)记录机制实现,这是乐观锁最常用的一种实现方式.何谓数据版本?即为数

【MySQL】乐观锁和悲观锁

最近学习了一下数据库的悲观锁和乐观锁,根据自己的理解和网上参考资料总结如下: 悲观锁介绍(百科): 悲观锁,正如其名,它指的是对数据被外界(包括本系统当前的其他事务,以及来自外部系统的事务处理)修改持保守态度,因此,在整个数据处理过程中, 将数据处于锁定状态.悲观锁的实现,往往依靠数据库提供的锁机制(也只有数据库层提供的锁机制才能真正保证数据访问的排他性,否则,即使在本系统中实现了 加锁机制,也无法保证外部系统不会修改数据). 使用场景举例:以MySQL InnoDB为例 商品goods表中有一

【mysql】关于乐观锁

一.乐观锁介绍 乐观锁( Optimistic Locking ) 相对悲观锁而言,乐观锁假设认为数据一般情况下不会造成冲突,所以在数据进行提交更新的时候,才会正式对数据的冲突与否进行检,乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库如果提供类似于write_condition机制的其实都是提供的乐观锁.类似SVN 悲观锁假定其他用户企图访问或者改变你正在访问.更改的对象的概率是很高的,因此在悲观锁的环境中,在你开始改变此对象之前就将该对象锁住,并且直到你提交了所作的更改之后才释放锁.

mysql乐观锁总结和实践

上一篇文章<MySQL悲观锁总结和实践>谈到了MySQL悲观锁,但是悲观锁并不是适用于任何场景,它也有它存在的一些不足,因为悲观锁大多数情况下依靠数据库的锁机制实现,以保证操作最大程度的独占性.如果加锁的时间过长,其他用户长时间无法访问,影响了程序的并发访问性,同时这样对数据库性能开销影响也很大,特别是对长事务而言,这样的开销往往无法承受.所以与悲观锁相对的,我们有了乐观锁,具体参见下面介绍: 乐观锁介绍: 乐观锁( Optimistic Locking ) 相对悲观锁而言,乐观锁假设认为数据

mysql乐观锁总结和实践(转)

原文:mysql乐观锁总结和实践 上一篇文章<MySQL悲观锁总结和实践>谈到了MySQL悲观锁,但是悲观锁并不是适用于任何场景,它也有它存在的一些不足,因为悲观锁大多数情况下依靠数据库的锁机制实现,以保证操作最大程度的独占性.如果加锁的时间过长,其他用户长时间无法访问,影响了程序的并发访问性,同时这样对数据库性能开销影响也很大,特别是对长事务而言,这样的开销往往无法承受.所以与悲观锁相对的,我们有了乐观锁,具体参见下面介绍: 乐观锁介绍: 乐观锁( Optimistic Locking )

乐观锁与悲观锁——解决并发问题(转)

引言 为什么需要锁(并发控制)? 在多用户环境中,在同一时间可能会有多个用户更新相同的记录,这会产生冲突.这就是著名的并发性问题. 典型的冲突有: 丢失更新:一个事务的更新覆盖了其它事务的更新结果,就是所谓的更新丢失.例如:用户A把值从6改为2,用户B把值从2改为6,则用户A丢失了他的更新. 脏读:当一个事务读取其它完成一半事务的记录时,就会发生脏读取.例如:用户A,B看到的值都是6,用户B把值改为2,用户A读到的值仍为6. 为了解决这些并发带来的问题. 我们需要引入并发控制机制. 并发控制机制

乐观锁与悲观锁——解决并发问题

悲观锁(Pessimistic Lock), 顾名思义,就是很悲观,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它拿到锁.传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁. 乐观锁(Optimistic Lock), 顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制.乐观锁适用于

乐观锁与悲观锁随笔

原创声明:本文为本人原创作品,绝非他处摘取,转载请注明出处 1.乐观锁 介绍:认为数据在使用过程中,不会被其他程序修改.所以只有在数据提交时才检测数据是否已经被修改 实现方法 1).使用版本号:给数据所在表加个字段,记录数据版本号.提交时检测版本号与未修改前的版本号一不一致.不一致说明数据已经被其他线程修改. 2).使用时间截:给数据所在表加个字段,记录时间.提交时检测时间与取出的时间截一不一致.不一致说明数据已经被其他线程修改. 使用场景:如上下级审核文件. 2.悲观锁 介绍:悲观的认为数据提

(转)乐观锁与悲观锁——解决并发问题

引言 为什么需要锁(并发控制)? 在多用户环境中,在同一时间可能会有多个用户更新相同的记录,这会产生冲突.这就是著名的并发性问题. 典型的冲突有: 丢失更新:一个事务的更新覆盖了其它事务的更新结果,就是所谓的更新丢失.例如:用户A把值从6改为2,用户B把值从2改为6,则用户A丢失了他的更新. 脏读:当一个事务读取其它完成一半事务的记录时,就会发生脏读取.例如:用户A,B看到的值都是6,用户B把值改为2,用户A读到的值仍为6. 为了解决这些并发带来的问题. 我们需要引入并发控制机制. 并发控制机制