【cs229-Lecture11】贝叶斯统计正则化

本节知识点:

贝叶斯统计及规范化

在线学习

如何使用机器学习算法解决具体问题:设定诊断方法,迅速发现问题


贝叶斯统计及规范化(防止过拟合的方法)

就是要找更好的估计方法来减少过度拟合情况的发生。
回顾一下,线性回归中使用的估计方法是最小二乘法,logistic  回归是条件概率的最大
似然估计,朴素贝叶斯是联合概率的最大似然估计,SVM 是二次规划。

一下转自:http://52opencourse.com/133/coursera

斯坦福大学机器学习第七课"正则化“学习笔记,本次课程主要包括4部分:

1)  The Problem of Overfitting(过拟合问题)

2)  Cost Function(成本函数)

3)  Regularized Linear Regression(线性回归的正则化)

4)  Regularized Logistic Regression(逻辑回归的正则化)

以下是每一部分的详细解读。

1)  The Problem of Overfitting(过拟合问题)

拟合问题举例-线性回归之房价问题:

a) 欠拟合(underfit, 也称High-bias)

b) 合适的拟合:

c) 过拟合(overfit,也称High variance)

什么是过拟合(Overfitting):

如果我们有非常多的特征,那么所学的Hypothesis有可能对训练集拟合的非常好(),但是对于新数据预测的很差。

过拟合例子2-逻辑回归:

与上一个例子相似,依次是欠拟合,合适的拟合以及过拟合:

a) 欠拟合

b) 合适的拟合

c) 过拟合

如何解决过拟合问题:

首先,过拟合问题往往源自过多的特征,例如房价问题,如果我们定义了如下的特征:

那么对于训练集,拟合的会非常完美:

所以针对过拟合问题,通常会考虑两种途径来解决:

a) 减少特征的数量:

-人工的选择保留哪些特征;

-模型选择算法(之后的课程会介绍)

b) 正则化

-保留所有的特征,但是降低参数的量/值;

-正则化的好处是当特征很多时,每一个特征都会对预测y贡献一份合适的力量;

2)  Cost Function(成本函数)

依然从房价预测问题开始,这次采用的是多项式回归:

a) 合适的拟合:

b) 过拟合

直观来看,如果我们想解决这个例子中的过拟合问题,最好能将的影响消除,也就是让.

假设我们对进行惩罚,并且令其很小,一个简单的办法就是给原有的Cost function加上两个略大惩罚项,例如:

这样在最小化Cost function的时候,.

正则化:

参数取小一点的值,这样的优点:

-“简化”的hypothesis;

-不容易过拟合;

对于房价问题:

-特征包括:

-参数包括:

我们对除以为的参数进行惩罚,也就是正则化:

正式的定义-经过正则化的Cost Function有如下的形式:

其中称为正则化参数,我们的目标依然是最小化:

例如,对于正则化的线性回归模型来说,我们选择来最小化如下的正则化成本函数:

如果将 设置为一个极大的值(例如对于我们的问题,设 )? 那么

-算法依然会正常的工作, 将 设置的很大不会影响算法本身;

-算法在去除过拟合问题上会失败;

-算法的结构将是欠拟合(underfitting),即使训练数据非常好也会失败;

-梯度下降算法不一定会收敛;

这样的话,除了,其他的参数都约等于0, , 将得到类似如下的欠拟合图形:

关于正则化,以下引自李航博士《统计学习方法》1.5节关于正则化的一些描述:

模型选择的典型方法是正则化。正则化是结构风险最小化策略的实现,是在经验风险上加一个正则化项(regularizer)或罚项(penalty term)。正则化项一般是模型复杂度的单调递增函数,模型越复杂,正则化值就越大。比如,正则化项可以是模型参数向量的范数。

正则化符合奥卡姆剃刀(Occam‘s razor)原理。奥卡姆剃刀原理应用于模型选择时变为以下想法:在所有可能选择的模型中,能够很好地解释已知数据并且十分简单才是最好的模型,也就是应该选择的模型。从贝叶斯估计的角度来看,正则化项对应于模型的先验概率。可以假设复杂的模型有较大的先验概率,简单的模型有较小的先验概率。

3)  Regularized Linear Regression(线性回归的正则化)

线性回归包括成本函数,梯度下降算法及正规方程解法等几个部分,不清楚的读者可以回顾第二课第四课的笔记,这里将分别介绍正则化后的线性回归的成本函数,梯度下降算法及正规方程等。

首先来看一下线性回归正则化后的Cost function:

我们的目标依然是最小化,从而得到相应的参数. 梯度下降算法是其中的一种优化算法,由于正则化后的线性回归Cost function有了改变,因此梯度下降算法也需要相应的改变:

注意,对于参数,梯度下降算法需要区分

同样的正规方程的表达式也需要改变,对于:

X 是m * (n+1)矩阵

y是m维向量:

正则化后的线性回归的Normal Equation的公式为:

假设样本数m小于等于特征数x, 如果没有正则化,线性回归Normal eqation如下:

如果不可逆怎么办?之前的办法是删掉一些冗余的特征,但是线性回归正则化后,如果,之前的公式依然有效:

其中括号中的矩阵可逆。

4)  Regularized Logistic Regression(逻辑回归的正则化)

和线性回归相似,逻辑回归的Cost Function也需要加上一个正则化项(惩罚项),梯度下降算法也需要区别对待参数\(\theta).

再次回顾一些逻辑回归过拟合的情况,形容下面这个例子:

其中Hypothesis是这样的:

逻辑回归正则化后的Cost Function如下:

梯度下降算法如下:

其中.

参考资料:

第七课“正则化”的课件资料下载链接,视频可以在Coursera机器学习课程上观看或下载:https://class.coursera.org/ml

PPT PDF

李航博士《统计学习方法

http://en.wikipedia.org/wiki/Regularization_%28mathematics%29

http://en.wikipedia.org/wiki/Overfitting


在线学习

之前学的算法都是批处理算法,即在训练集上得到模型后,再去对测试集或者训练集本身进行评测,得到训练误差和泛化误差。而在线学习并不这样,而是首先有一个初始的分类器,当第一个样本到来时,对该样本进行预测,得到预测结果,然后利用该样本的信息对分类器进行更新(比如,考虑感知器算法的更新规则,见笔记  1-2);然后第二个样本到来时做同样的操作,以此类推。这样,我们就对 m 个样本都有一个预测值,只不过它们都是在训练的过程中得到的,对这些预测值进行统计,就得到了在线训练误差。这就是过程上在线学习与批处理的不同之处。
对于感知器算法来说,若正负样本线性可分,那么在线学习算法也是收敛的。



以下转自:http://blog.csdn.net/stdcoutzyx

时间: 2024-10-11 04:43:40

【cs229-Lecture11】贝叶斯统计正则化的相关文章

斯坦福CS229机器学习课程笔记六:学习理论、模型选择与正则化

稍微了解有监督机器学习的人都会知道,我们先通过训练集训练出模型,然后在测试集上测试模型效果,最后在未知的数据集上部署算法.然而,我们的目标是希望算法在未知的数据集上有很好的分类效果(即最低的泛化误差),为什么训练误差最小的模型对控制泛化误差也会有效呢?这一节关于学习理论的知识就是让大家知其然也知其所以然. 学习理论 1.empirical risk minimization(经验风险最小化) 假设有m个样本的训练集,并且每个样本都是相互独立地从概率分布D中生成的.对于假设h,定义training

机器学习入门资源--汇总

机器学习入门资源--汇总 基本概念 机器学习 机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多门学科.机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法.机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法.因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论.算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法. 下面从微观到宏观试着梳理一下机器学习的范畴:

cs229 斯坦福机器学习笔记(二)

LR回顾 LR是机器学习入门的第一道坎,总结一下,Linear Regression 和logistic Regression都是属于GLM,套了logistic之后,输出结果就变成一个概率了,loss function和 likelihood function取反是类似的东西,都可以作为优化的目标.但我感觉 likelihood function从概率统计上来说,更有理论支持吧.loss function 直接对残差求平方和,直觉上也是挺合理的:当然,对于logistic Regression

机器学习笔记—正则化和模型选择

如果针对某个学习问题,从众多模型中选择一个模型,能够在偏差和方差中做一个平衡,怎么样才能自动选择呢?例如,使用多项式回归模型 h(x)=g(θ0+θ1x+θ2x2+...+θkxk),想自动决定 k 的值,在 0~10 之间选择.再比如,要自动选择局部权重回归中的带宽参数 τ,或者 L1 正则化 SVM 的参数 C,怎么做呢? 设有有限个模型 M={M1,...,Md} 供选择,例如在上面的例子中,M 可以是一个 i 项式回归模型.如果想要在 SVM.神经网络和 Logistic 回归之间选择,

资源 | 源自斯坦福CS229,机器学习备忘录在集结

在 Github 上,afshinea 贡献了一个备忘录对经典的斯坦福 CS229 课程进行了总结,内容包括监督学习.无监督学习,以及进修所用的概率与统计.线性代数与微积分等知识. 项目地址:https://github.com/afshinea/stanford-cs-229-machine-learning 据项目介绍,该 repository 旨在总结斯坦福 CS 229 机器学习课程的所有重要概念,包括: 学习该课程所需的重要预备知识,例如概率与统计.代数与微积分等进修课程. 对每个机器

贝叶斯统计概要(待修改)

一:频率派,贝叶斯派的哲学   现在考虑一个最最基本的问题,到底什么是概率?当然概率已经是在数学上严格的,良好定义的,这要归功于30年代大数学家A.N.Kolmogrov的概率论公理化.但是数学上的概率和现实世界到底是有怎样的关系?我们在用数学理论--------概率论解决实际问题的时候,又应该用什么样的观点呢?这真差不多是个哲学问题.这个问题其实必须得好好考察一下,下面我们看看最基本的两种哲学观,分别来自频率派和贝叶斯派, 我们这里的“哲学”指的是数学研究中朴素的哲学观念,而不是很严肃的哲学讨

正则化方法:L1和L2 regularization、数据集扩增、dropout

本文是<Neural networks and deep learning>概览 中第三章的一部分,讲机器学习/深度学习算法中常用的正则化方法.(本文会不断补充) 正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程,网络在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大--因为训练出来的网络过拟合了训练集,对训练集外的数据却不work

机器学习:过拟合与正则化

过拟合的定义:过拟合是指模型过度拟合训练集, 学到训练集中过多的噪音或随机波动,导致模型泛化能力差的情况.它表现为在训练集上表现良好,在测试集上表现差. 解决方法:1.重新清洗数据,导致过拟合的一个原因也有可能是数据不纯导致的,如果出现了过拟合就需要我们重新清洗数据. 2.数据集扩增(data augmentation)  2.1从数据源头采集更多数据  2.2复制原有数据并加上随机噪声  2.3重采样 3.采用dropout方法.dropout方法在训练时删除一定比例的神经元, 让这些神经元不

Kaldi的交叉熵正则化

xent_regularize, Cross Entropy Regularize nnet3/nnet-discriminative-trainning.cc:109 void NnetDiscriminativeTrainer::ProcessOutputs() 交叉熵正则化,即帧平滑 <解读深度学习:语音识别实践>8.2.3 帧平滑 当正确地进行词图补偿后,进行几次序列鉴别性训练的迭代后,就会很快出现过拟合.即,几次鉴别性训练迭代后,模型计算出的帧准确率(帧的后验概率)显著变差(比原模型