BZOJ 2005 能量采集

Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】
5 4

【样例输入2】
3 4

Sample Output

【样例输出1】
36

【样例输出2】
20

【数据规模和约定】
对于10%的数据:1 ≤ n, m ≤ 10;

对于50%的数据:1 ≤ n, m ≤ 100;

对于80%的数据:1 ≤ n, m ≤ 1000;

对于90%的数据:1 ≤ n, m ≤ 10,000;

对于100%的数据:1 ≤ n, m ≤ 100,000。

HINT

Source

题目求,转化为求

枚举i,做法同 BZOJ 2301 Problem b,此处不再赘述。

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstdlib>
 4 using namespace std;
 5
 6 typedef long long ll;
 7 #define maxn 100010
 8 int n,m,tot,prime[maxn],mu[maxn];
 9 bool exist[maxn]; ll ans;
10
11 inline void find()
12 {
13     mu[1] = 1;
14     for (int i = 2;i <= n;++i)
15     {
16         if (!exist[i]) prime[++tot] = i,mu[i] = -1;
17         for (int j = 1;j <= tot&&i*prime[j]<=n;++j)
18         {
19             exist[i*prime[j]] = true;
20             if (i % prime[j] == 0) { mu[i*prime[j]] = 0; break; }
21             mu[i*prime[j]] = -mu[i];
22         }
23     }
24     for (int i = 1;i <= n;++i) mu[i] += mu[i-1];
25 }
26
27 inline ll calc(int a,int b,int d)
28 {
29     a /= d; b /= d;
30     ll ret = 0; int pos;
31     for (int i = 1;i <= a;i = pos+1)
32     {
33         pos = min(a/(a/i),b/(b/i));
34         ret += (ll)(mu[pos]-mu[i-1])*(ll)(a/i)*(ll)(b/i);
35     }
36     return ret;
37 }
38
39 int main()
40 {
41     freopen("2005.in","r",stdin);
42     freopen("2005.out","w",stdout);
43     scanf("%d %d",&n,&m); if (n > m) swap(n,m);
44     find();
45     for (int i = 1;i <= n;++i)
46         ans += (ll)((i<<1)-1)*calc(n,m,i);
47     printf("%lld",ans);
48     fclose(stdin); fclose(stdout);
49     return 0;
50 }

时间: 2024-12-24 03:21:15

BZOJ 2005 能量采集的相关文章

bzoj 2005 能量采集 - 容斥原理

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列 有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n, 表示是在第x列,y的范围是1至m,表示是在第x列的第y棵. 由于能量汇集机器较大,不便移动,栋栋将它放在了 一个角上,坐标正好是(0, 0). 能量汇集机器在汇集的过程中有一定的能量

2005: [Noi2010]能量采集 - BZOJ

Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵. 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0). 能量汇集机器在汇集的过

BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )

一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= n, 1 <= y <= m ) 的数对(x, y)个数. 这个不好求, 考虑容斥, 设f(i) 为含有公因数 i 的数对(x, y)(1 <= x <= n, 1 <= y <= m)个数 , 显然f(i) = (n / i) * (m / i). 则 g(i) = f

bzoj 2005: [Noi2010]能量采集 筛法||欧拉||莫比乌斯

2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MB[Submit][Status][Discuss] Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列 有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范

BZOJ 2005 [Noi2010]能量采集 (容斥)

[Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MB Submit: 2324  Solved: 1387 [Submit][Status][Discuss] Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以

【BZOJ 2005】[Noi2010]能量采集

Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵. 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0). 能量汇集机器在汇集的过

【BZOJ 2005】[Noi2010]能量采集 (容斥原理| 欧拉筛+ 分块)

能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵. 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0). 能量汇集机器

【BZOJ】【2005】【NOI2010】能量采集

欧拉函数 玛雅,我应该先看看JZP的论文的……贾志鹏<线性筛法与积性函数>例题一 这题的做法……仔细想下可以得到:$ans=2*\sum_{a=1}^n\sum_{b=1}^m gcd(a,b)-n*m$ 那么重点就在于算$\sum_{a=1}^n\sum_{b=1}^m gcd(a,b)$这个东西 copy一下JZP的推导过程: $$ \sum_{a=1}^n \sum_{b=1}^m gcd(a,b)=&\sum_{a=1}^n \sum_{b=1}^m \sum_{d|gcd(a

2005: [Noi2010]能量采集

2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 1831  Solved: 1086[Submit][Status] Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标