【具体数学 读书笔记】1.2 Lines in the Plane

本节介绍平面划分问题,即n条直线最多把一个平面划分为几个区域(region)。

问题描述:

  "What is the maximum number Ln of regions defined by n lines in the plane?"

这个问题最初由瑞士数学家Jacob Steiner在1826年解决。

延续上一节的解题步骤,即首先关注小规模数据,观察出结果,然后猜测一个递推式并从理论上证明,最后由递推式导出"closed form"(通项式)。下面具体整理解题步骤:

1. 观察得出小规模数据的结果,尝试给出递推式:

  L1 = 2

  L2 = 4 = 2 + 2

  L3 = 7 = 4 + 3

现在可以猜测一个递推式:Ln = Ln-1 + n

2. 从理论上证明递推式:

首先对于直线分平面问题有一个结论: a straight line can split a convex region into at most two new regions, which will also be convex. 即一条直线最多可以把一个凸的区域分成两个凸的区域。

(对于convex,旁注上有如下定义:a region is convex if it includes all line segments between any two of its points.)

接下来可以观察到如下结论:

  for n>0, the nth line increases the number of regions by k

  iff. it splits k old regions

  iff. it hits the previous lines in k-1 different points.

由于已有n-1条直线,所以第n条直线最多和已有直线产生n-1个交点,所以k的最大值为n,由此一个可行解,它是充分的 Ln <= Ln-1 + n (n>0)

接下来试图说明它的必要性:只要把第n条直线放在与前n-1条都不相交的方向,那么第n条直线必和前n-1条直线各有一个交点。又因为Ln-1为最大值,所以保证了前n-1条直线产生的n-2个交点互异,可以做到第n条直线产生的n-1个新交点彼此互异,且和前n-2个交点也互异。由此 Ln >= Ln-1 + n (n>0)。

所以取等号了,加上对平凡情况的约定,构成如下递推式:

  L0 = 1

  Ln = Ln-1 + n (n>0)

3. 由递推式求通项式:

"we can often understand a recurrence by ‘unfolding‘ or ‘plugging in‘ it all the way to the end." 即逐项代入,直至平凡情况,看展开后的值是否易求。

  Ln = Ln-1 + n

= Ln-2 + (n-1) + n

= ...

= L0 + 1 + 2 + ... + (n-1) + n = 1 + Sn

其中Sn是很常见的前n项整数和,又叫"triangular numbers",因为它是n行的三角形摆放的保龄球的个数;也可以叫它前缀和吧。传说高斯在9岁时给出的通项式~~Sn = n(n+1)/2。由此得到Ln的通项式 Ln = n(n+1)/2 + 1

作者说我们不妨记住Sn数列的小规模值,如下表:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Sn 1 3 6 10 15 21 28 36 45 55 66 78 91 105

//接下来作者还介绍了"bent line"即折线分平面问题。一条折线可以看作是两条直线相交得到,但抹除了两条射线,所分成的区域数减少一半。(未完待续)

时间: 2024-07-30 10:21:21

【具体数学 读书笔记】1.2 Lines in the Plane的相关文章

3D数学读书笔记——向量运算及在c++上的实现

本系列文章由birdlove1987编写,转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/24782661 开始之前:接上上篇说的,张宇老师说过线性代数研究的就是向量.其实严谨的说,数学中专门研究向量的分之称作线性代数,线性代数是一个非常有趣并且应用广泛的研究 领域,但它与3D数学关注的领域并不相同.3D数学主要关心向量和向量运算的几何意义. 零向量:任何集合,都存在 the additive identity el

3D数学读书笔记——3D中的方位与角位移

本系列文章由birdlove1987编写,转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/25339595 方位和角位移的基本概念 什么是方位.角位移? 直观的说,我们知道,物体的"方位"主要描写叙述物体的朝向,然而,"方向"和"方位"并不全然一样.向量有"方向"但没有"方位",差别在于,当一个向量指向特定方向时,能够让向量自转

3D数学读书笔记——矩阵基础番外篇之线性变换

本系列文章由birdlove1987编写,转载请注明出处. 文章链接:http://blog.csdn.net/zhurui_idea/article/details/25102425 前面有一篇文章讨论过多坐标系的问题.有的人可能会问我那么多坐标系,它们之间怎么关联呢?嘿嘿~这次的内容可以为解决这个问题打基础奥! 线性变换基础(3D数学编程中,形式转换经常是错误的根源,所以这部分大家要多多思考,仔细运算) 一般来说,方阵(就是行和列都相等的矩阵)能描述任意的线性变换,所以后面我们一般用方阵来变

3D数学读书笔记——矩阵基础

本系列文章由birdlove1987编写,转载请注明出处. 文章链接:http://blog.csdn.net/zhurui_idea/article/details/24975031 矩阵是3D数学的重要基础,它主要用来描述两个坐标系统间的关系,通过定义一种运算而将一个坐标系中的向量转换到另一个坐标系中. 在线性代数中,矩阵就是一个以行和列形式组织的矩形数字块.向量是标量的数组,矩阵则是向量的数组. 矩阵的维度和记法 矩阵的维度被定义为它包含了多少行和多少列,一个 r * c 矩阵有 r 行.

3D数学读书笔记——四元数

本系列文章由birdlove1987编写,转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/25400659 什么是四元数 复数是由实数加上虚数单位 i 组成,其中 i2  = -1 相似地,四元数都是由实数加上三个元素 i.j.k 组成,而且它们有如下的关系: i2 = j2 = k2 = ijk = -1 每个四元数都是 1.i.j 和 k 的线性组合,即是四元数一般可表示为a + bi + cj + dk. 关于

3D数学读书笔记——矩阵进阶

本系列文章由birdlove1987编写,转载请注明出处. 文章链接:http://blog.csdn.net/zhurui_idea/article/details/25242725 终于要学习矩阵的平移了,通过平移可以处理很多问题,包括非坐标轴基准的变换问题,不同坐标系转换问题.嘿嘿! 行列式(其实行列式就是一种计算法则) 在任意矩阵中都存在一个标量,称作该方阵的行列式. 方阵M的行列式记作 |M| 或 det M .非方阵矩阵的行列式是未定义的. 2 * 2阶矩阵行列式的定义 3 * 3阶

3D数学读书笔记——笛卡尔坐标系统

本系列文章由birdlove1987编写,转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/24601215 1.3D数学是一门和计算机几何相关的学科,计算几何则是研究用数值方法解决几何问题的学科.3D数学讲解如何在3D空间中精确度量位置.距离和角度. 2.在3D数学里使用最广泛的度量体系是笛卡尔坐标系统.(笛卡尔数学由法国数学家Rene Descartes发明,并以他的名字命名) 3.关于数的类型:实数包含有理数和无

3D数学读书笔记——多坐标系和向量基础

本系列文章由birdlove1987编写,转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/24662453 第一个知识点:多坐标系 基础:仅仅要选定原点和坐标轴就能在不论什么地方建立坐标系 从问题问出发:为什么要使用多坐标系.一个3D系利用其无限延伸性.就可以包括空间中全部的点,建立一个统一的世界,这样不是更简单吗? 实践中的答案:大量实践发现.在不同的环境下使用不同的坐标系更加方便(邓爷爷说过:实践是检验真理的唯一

&#183;读书笔记」 具体数学

头脑一热,然后买了<具体数学>,差点还买了英文版后来觉得自己英文太烂,还是决定购买的中文版书是前几天到的,从2014.8.1号开始看,坚持每天看一点,学习一点.为了监督自己,决定在这里开一贴,记录我的学习路程. 时间:2014.8.1  地点:家里 今天阅读的是本书的第一章,讲的是递归问题,也是算法的基础,当然这里主要讲的是数学.但是没办法,我是一名ACMer,必须要和程序紧密联系在一起.我觉得明天还需要花一天时间来看这章,需要解决下后面的习题以及再加深点体会. 第一章 递归问题 1.1 汉诺