HDU ACM 1524 A Chess Game->博弈(SG函数)

题意:一个有向无环图上有n个顶点,每一个顶点都可以放一个棋子或不放,有两个人,每次根据这个图只能将任意一颗棋子移动一步,如果到某一步玩家不能移动时,那么这个人就输.

分析:

1、有向无环图的博弈,dfs把所有顶点的SG值都计算出来,然后对每个棋子的SG值进行异或运算,为0就是先手必败,否则就是先手必胜.

2、如果某个人移动后,所有棋子都在出度为0的顶点,那么他必败。

SG函数简介:

a、对于给定的有向无环图,定义图中每个顶点的Sprague-Grundy函数g如下:g(x) = mex{ g(y) | y是x的后继 }。

mex(x)表示最小的不属于这个集合的非负整数。例如:mex{0,1,2,4} = 3、mex{2,3,5} = 0、mex{ } = 0。

b、SG函数的性质:首先,所有终结点所对应的顶点,也就是出度为0的顶点,其SG值为0,因为它的后继集合是空集。然后对于一

个g(x) = 0的顶点x,它的所有后继y都满足g(y)!=0。对于一个g(x)!=0的顶点,必定存在一个后继y满足g(y)=0.

c、求整个SG函数值的过程是一个对有向无环图进行深搜过程.

#include<iostream>
#include<vector>
using namespace std;

int sg[1010];
vector<int> map[1010];

int GetSg(int x)
{
	int i;

	if(sg[x]!=-1) return sg[x];

	if(map[x].size()==0) return sg[x]=0;

	bool vis[1010];
	memset(vis,0,sizeof(vis));
	for(i=0;i<map[x].size();i++)
		vis[GetSg(map[x][i])]=1;

	for(i=0;;i++)
		if(vis[i]==0)
			return sg[x]=i;

}

int main()
{
	int N,M,i,Xi,k;
	int res;

	while(cin>>N)
	{
		memset(sg,-1,sizeof(sg));
		for(i=0;i<N;i++)
		{
			map[i].clear();
			cin>>k;
			while(k--)
			{
				cin>>Xi;
				map[i].push_back(Xi);
			}
		}
		while(cin>>M && M)
		{
			res=0;
			for(i=0;i<M;i++)
			{
				cin>>Xi;
				res^=GetSg(Xi);
			}
			if(!res) puts("LOSE");
	    	else puts("WIN");
		}
	}
    return 0;
}
时间: 2024-10-25 23:39:28

HDU ACM 1524 A Chess Game->博弈(SG函数)的相关文章

HDU 1524 - A Chess Game(sg函数 + dfs)

A Chess Game Problem Description Let's design a new chess game. There are N positions to hold M chesses in this game. Multiple chesses can be located in the same position. The positions are constituted as a topological graph, i.e. there are directed

hdu 3032(博弈sg函数)

题意:与原来基本的尼姆博弈不同的是,可以将一堆石子分成两堆石子也算一步操作,其它的都是一样的. 分析:由于石子的堆数和每一堆石子的数量都很大,所以肯定不能用搜索去求sg函数,现在我们只能通过找规律的办法求得sg的规律. 通过打表找规律可以得到如下规律:if(x%4==0) sg[x]=x-1; if(x%4==1||x%4==2) sg[x]=x; if(x%4==3) sg[x] = x+1. 打表代码: #include<iostream> #include<cstdio> #

HDU 3537 Daizhenyang&#39;s Coin(博弈-sg)

Daizhenyang's Coin Problem Description We know that Daizhenyang is chasing a girlfriend. As we all know, whenever you chase a beautiful girl, there'll always be an opponent, or a rival. In order to take one step ahead in this chasing process, Daizhen

UVA 10561 - Treblecross(博弈SG函数)

UVA 10561 - Treblecross 题目链接 题意:给定一个串,上面有'X'和'.',可以在'.'的位置放X,谁先放出3个'X'就赢了,求先手必胜的策略 思路:SG函数,每个串要是上面有一个X,周围的4个位置就是禁区了(放下去必败),所以可以以X分为几个子游戏去求SG函数的异或和进行判断,至于求策略,就是枚举每个位置就可以了 代码: #include <stdio.h> #include <string.h> #include <algorithm> usi

UVA 11534 - Say Goodbye to Tic-Tac-Toe(博弈sg函数)

UVA 11534 - Say Goodbye to Tic-Tac-Toe 题目链接 题意:给定一个序列,轮流放XO,要求不能有连续的XX或OO,最后一个放的人赢,问谁赢 思路:sg函数,每一段...看成一个子游戏,利用记忆化求sg值,记忆化的状态要记录下左边和右边是X还是O即可 代码: #include <stdio.h> #include <string.h> const int N = 105; int t, sg[3][3][N]; char str[N]; int ge

HDU 3032 Nim or not Nim? (sg函数求解)

Nim or not Nim? Problem Description Nim is a two-player mathematic game of strategy in which players take turns removing objects from distinct heaps. On each turn, a player must remove at least one object, and may remove any number of objects provide

hdu 1536 S-Nim|| poj 2960 S-Nim (sg函数)

#include <stdio.h> #include <string.h> int s[110]; int sg[10010],hash[110]; int n, m; int getsg(int x) //sg模板 { int i; if(sg[x] != -1) return sg[x]; memset(hash,0,sizeof(hash)); for(i = 0; i < n; i++) { if(x >= s[i]) { sg[x - s[i]] = get

HDU 1848 Fibonacci again and again (斐波那契博弈SG函数)

Fibonacci again and again Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status Description 任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的: F(1)=1; F(2)=2; F(n)=F(n-1)+F(n-2)(n>=3); 所以,1,2,3,5,8,13……就是菲波那契数列. 在

hdu 5795 A Simple Nim 博弈sg函数

A Simple Nim Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Problem Description Two players take turns picking candies from n heaps,the player who picks the last one will win the game.On each turn they can pick an