Hive中小表与大表关联(join)的性能分析【转】

Hive中小表与大表关联(join)的性能分析


【转自:http://blog.sina.com.cn/s/blog_6ff05a2c01016j7n.html】

经常看到一些Hive优化的建议中说当小表与大表做关联时,把小表写在前面,这样可以使Hive的关联速度更快,提到的原因都是说因为小表可以先放到内存中,然后大表的每条记录再去内存中检测,最终完成关联查询。这样的原因看似合理,但是仔细推敲,又站不住脚跟。

多小的表算小表?如果所谓的小表在内存中放不下怎么办?我用2个只有几条记录的表做关联查询,这应该算是小表了,在查看reduce的执行日志时依然是有写磁盘的操作的。实际上reduce在接收全部map的输出后一定会有一个排序所有键值对并合并写入磁盘文件的操作。写入磁盘(spill)有可能是多次的,因此有可能会生成多个临时文件,但是最终都要合并成一个文件,即最终每一个reduce都只处理一个文件。

我做了一个实验,用1条记录的表和3亿多条记录的表做join,无论小表是放在join的前面还是join的后面,执行的时间几乎都是相同的。再去看reduce的执行日志,1条记录的表在join前或者join后两次查询的reduce日志几乎也是一摸一样的。如果按照上面的说法把join左侧的表放内存等待join右侧的表到内存中去检测,那么当3亿多条记录的表放在join左侧时,内存肯定是无法容下这么多记录的,势必要进行写磁盘的操作,那它的执行时间应该会比小表在join前时长很多才对,但事实并不是这样,也就说明了上面说到的原因并不合理。

事实上把小表放在前面做关联可以提高效率这种说法是错误的。正确的说法应该是把重复关联键少的表放在join前面做关联可以提高join的效率。

分析一下Hive对于两表关联在底层是如何实现的。因为不论多复杂的Hive查询,最终都要转化成mapreduce的JOB去执行,因此Hive对于关联的实现应该和mapreduce对于关联的实现类似。而mapreduce对于关联的实现,简单来说,是把关联键和标记是在join左边还是右边的标识位作为组合键(key),把一条记录以及标记是在join左边还是右边的标识位组合起来作为值(value)。在reduce的shuffle阶段,按照组合键的关联键进行主排序,当关联键相同时,再按照标识位进行辅助排序。而在分区段时,只用关联键中的关联键进行分区段,这样关联键相同的记录就会放在同一个value list中,同时保证了join左边的表的记录在value
list的前面,而join右边的表的记录在value
list的后面。

例如A join B ON (A.id =
b.id) ,假设A表和B表都有1条id =
3的记录,那么A表这条记录的组合键是(3,0),B表这条记录的组合键是(3,1)。排序时可以保证A表的记录在B表的记录的前面。而在reduce做处理时,把id=3的放在同一个value list中,形成 key = 3,value list = [A表id=3的记录,B表id=3的记录]

接下来我们再来看当两个表做关联时reduce做了什么。Reduce会一起处理id相同的所有记录。我们把value list用数组来表示。

1)   Reduce先读取第一条记录v[0],如果发现v[0]是B表的记录,那说明没有A表的记录,最终不会关联输出,因此不用再继续处理这个id了,读取v[0]用了1次读取操作。

2)   如果发现v[0]到v[length-1]全部是A表的记录,那说明没有B表的记录,同样最终不会关联输出,但是这里注意,已经对value做了length次的读取操作。

3)   例如A表id=3有1条记录,B表id=3有10条记录。首先读取v[0]发现是A表的记录,用了1次读取操作。然后再读取v[1]发现是B表的操作,这时v[0]和v[1]可以直接关联输出了,累计用了2次操作。这时候reduce已经知道从v[1]开始后面都是B 表的记录了,因此可以直接用v[0]依次和v[2],v[3]……v[10]做关联操作并输出,累计用了11次操作。

4)   换过来,假设A表id=3有10条记录,B表id=3有1条记录。首先读取v[0]发现是A表的记录,用了1次读取操作。然后再读取v[1]发现依然是A表的记录,累计用了2次读取操作。以此类推,读取v[9]时发现还是A表的记录,累计用了10次读取操作。然后读取最后1条记录v[10]发现是B表的记录,可以将v[0]和v[10]进行关联输出,累计用了11次操作。接下来可以直接把v[1]~v[9]分别与v[10]进行关联输出,累计用了20次操作。

5)   再复杂一点,假设A表id=3有2条记录,B表id=3有5条记录。首先读取v[0]发现是A表的记录,用了1次读取操作。然后再读取v[1]发现依然是A表的记录,累计用了2次读取操作。然后读取v[2]发现是B表的记录,此时v[0]和v[2]可以直接关联输出,累计用了3次操作。接下来v[0]可以依次和v[3]~v[6]进行关联输出,累计用了7次操作。接下来v[1]再依次和v[2]~v[6]进行关联输出,累计用了12次操作。

6)   把5的例子调过来,假设A表id=3有5条记录,B表id=3有2条记录。先读取v[0]发现是A表的记录,用了1次读取操作。然后再读取v[1]发现依然是A表的记录,累计用了2次读取操作。以此类推,读取到v[4]发现依然是A表的记录,累计用了5次读取操作。接下来读取v[5],发现是B表的记录,此时v[0]和v[5]可以直接关联输出,累计用了6次操作。然后v[0]和v[6]进行关联输出,累计用了7次操作。然后v[1]分别与v[5]、v[6]关联输出,累计用了9次操作。V[2] 分别与v[5]、v[6]关联输出,累计用了11次操作。以此类推,最后v[4] 分别与v[5]、v[6]关联输出,累计用了15次操作。

7)   额外提一下,当reduce检测A表的记录时,还要记录A表同一个key的记录的条数,当发现同一个key的记录个数超过hive.skewjoin.key的值(默认为1000000)时,会在reduce的日志中打印出该key,并标记为倾斜的关联键。

最终得出的结论是:写在关联左侧的表每有1条重复的关联键时底层就会多1次运算处理。

假设A表有一千万个id,平均每个id有3条重复值,那么把A表放在前面做关联就会多做三千万次的运算处理,这时候谁写在前谁写在后就看出性能的差别来了。

时间: 2024-10-25 08:18:32

Hive中小表与大表关联(join)的性能分析【转】的相关文章

Mysql优化原则_小表驱动大表IN和EXISTS的合理利用

//假设一个for循环for($i = 0; $i < 10000; $i++) { for ($j = 0; $i < 50; $j++) { }} for($i = 0; $i < 50; $i++) { for ($j = 0; $i < 10000; $j++) { }} 看以上两个for循环,总共循环的次数是一样的.但是对于mysql数据库而言,并不是这样了,我们尽量选择第②个for循环,也就是小表驱动大表.数据库最伤神的就是跟程序链接释放,第一个建立了10000次链接,

查询优化--小表驱动大表(In,Exists区别)

Mysql 系列文章主页 =============== 本文将以真实例子来讲解小表驱动大表(In,Exists区别) 1 准备数据 1.1 创建表.函数.存储过程 参照  这篇(调用函数和存储过程批量插入数据)  文章中的第 1-7 步,注意,不要执行第8步 1.2 插入数据 现在来执行第8步. 1.2.1 向 Department 表中插入 100 条记录 CALL insert_dept(1000, 100) 1.2.2 向 Employee 表中插入 100000 条记录 CALL in

有一个大表,大表由于录入时候有个空置,现在将空置赋予日期

1.该表很大,8t,由三列,其中create_time,现在要求修改成非空值,由于数据量比较大,因此采用分批来增加. 脚本如下create or replace procedure PRC_UPDATE_CREATE_TIME isstart_num integer;start_date date;total number;update_count integer;per_loop_count integer;begindbms_output.put_line('Start to batch u

[Hive]Hive数据倾斜(大表join大表)

业务背景 用户轨迹工程的性能瓶颈一直是etract_track_info,其中耗时大户主要在于trackinfo与pm_info进行左关联的环节,trackinfo与pm_info两张表均为GB级别,左关联代码块如下: from trackinfo a left outer join pm_info b on (a.ext_field7 = b.id) 使用以上代码块需要耗时1.5小时. 优化流程 第一次优化 考虑到pm_info表的id是bigint类型,trackinfo表的ext_fiel

小表驱动大表, 兼论exists和in

给出两个表,A和B,A和B表的数据量, 当A小于B时,用exists select * from A where exists (select * from B where A.id=B.id) exists的实现,相当于外表循环,每次循环对内表进行查询? for i in A for j in B if j.id == i.id then .... 相反,如果A大于B的时候,则用in select * from A where id in (select id from B) 这种在逻辑上类似

PLSQL_Oracle分区表和相应的分区索引管理和使用(案例)(创建交易表等大表时进行分区提高效率)

2014-08-22 BaoXinjian 一.摘要 1.分区表: 随着表的不断增大,对于新纪录的增加.查找.删除等(DML)的维护也更加困难.对于数据库中的超大型表,可通过把它的数据分成若干个小表,从而简化数据库的管理活动.对于每一个简化后的小表,我们称为一个单个的分区 对于分区的访问,我们不需要使用特殊的SQL查询语句或特定的DML语句,而且可以单独的操作单个分区,而不是整个表.同时可以将不同分区的数据放置到不同的表空间,比如将不同年份的销售数据,存放在不同的表空间,即年的销售数据存放到TB

hive join 优化 --小表join大表

1.小.大表 join 在小表和大表进行join时,将小表放在前边,效率会高,hive会将小表进行缓存. 2.mapjoin 使用mapjoin将小表放入内存,在map端和大表逐一匹配,从而省去reduce. 例子: select /*+MAPJOIN(b)*/ a.a1,a.a2,b.b2 from tablea a JOIN tableb b ON a.a1=b.b1 在0.7版本后,也可以用配置来自动优化 set hive.auto.convert.join=true;

大数据技术之_29_MySQL 高級面试重点串讲_02_Mysql 简介+Linux 版的安装+逻辑架构介绍+性能优化+性能分析+查询截取分析+分区分库分表简介+锁机制+主从复制

第1章 Mysql 简介1.1 概述1.2 高级 MySQL第2章 Mysql Linux 版的安装2.1 下载地址2.2 检查当前系统是否安装过 mysql2.3 修改 Mysql 配置文件位置2.4 修改字符集和数据存储路径2.5 MySQL 的安装位置说明2.6 Mysql 配置文件说明2.7 Mysql 的数据存放目录第3章 Mysql 逻辑架构介绍3.1 总体概览3.2 查询说明第4章 Mysql 性能优化4.1 影响 mysql 的性能因素4.2 查询与索引优化分析4.2.1 性能下

hive大表和小表MapJoin关联查询优化

大表和小表关联查询可以采用mapjoin优化查询速度.那什么是mapjoin呢?理解MapJoin之前先介绍另一种Join方式,CommonJoin.我们知道Hive编写SQL语句,Hive会将SQL解析成MapReduce任务.对于一个简单的关联查询,CommonJoin任务设计Map阶段和Reduce阶段.Mapper 从连接表中读取数据并将连接的 key 和连接的 value 键值对输出到中间文件中.Hadoop 在所谓的 shuffle 阶段对这些键值对进行排序和合并.Reducer 将