POJ 3498March of the Penguins

题目:题目链接


March of the Penguins

Time Limit: 8000MS   Memory Limit: 65536K
Total Submissions: 4317   Accepted: 1957

Description

Somewhere near the south pole, a number of penguins are standing on a number of ice floes. Being social animals, the penguins would like to get together, all on the same floe. The penguins do not want to get wet, so they have use their limited jump distance
to get together by jumping from piece to piece. However, temperatures have been high lately, and the floes are showing cracks, and they get damaged further by the force needed to jump to another floe. Fortunately the penguins are real experts on cracking ice
floes, and know exactly how many times a penguin can jump off each floe before it disintegrates and disappears. Landing on an ice floe does not damage it. You have to help the penguins find all floes where they can meet.

A sample layout of ice floes with 3 penguins on them.

Input

On the first line one positive number: the number of testcases, at most 100. After that per testcase:

  • One line with the integer N (1 ≤ N ≤ 100) and a floating-point number D (0 ≤ D ≤ 100 000), denoting the number of ice pieces and the maximum distance a penguin can jump.
  • N lines, each line containing xiyini and mi, denoting for each ice piece its X and Y coordinate, the number of penguins on it and the maximum number
    of times a penguin can jump off this piece before it disappears (?10 000 ≤ xiyi ≤ 10 000, 0 ≤ ni ≤ 10, 1 ≤ mi ≤ 200).

Output

Per testcase:

  • One line containing a space-separated list of 0-based indices of the pieces on which all penguins can meet. If no such piece exists, output a line with the single number ?1.

Sample Input

2
5 3.5
1 1 1 1
2 3 0 1
3 5 1 1
5 1 1 1
5 4 0 1
3 1.1
-1 0 5 10
0 0 3 9
2 0 1 1

Sample Output

1 2 4
-1

Source

Northwestern Europe 2007

题意:

有一群企鹅分布在一些浮冰(容量无限大)上。问你这些企鹅能不能到同一块浮冰上,如果能,输出能够。

题目有如下限制:

n块浮冰,给出每块浮冰的位置,每块浮冰上有一定数额的企鹅,且两块浮冰能通过的条件是他们的距离不大于d。

并且每块浮冰能接受离开该浮冰的企鹅数有限制。

题解:

这是一道最大流的题目。

题目的限制条件在于离开浮冰企鹅数有限制,我们可以理解为把该浮冰作为中转的企鹅数限制。由于浮冰是一个点,所以我们进行拆点,把限制条件放在了边上(i,i+n)。

然后我们进行枚举终点,来判断是不是满流。

建图的技巧在于我们设置一个超级源,与拆点之后的i连接,容量定为mi。至于终点的话,加入我们枚举的聚集在一起的浮冰为x,我们则设x为终点,并不是设x+n为终点。

每枚举完一个点,注意要把图中的流清零。

代码:

Source Code
#include<cstdio>
#include<cstring>
#include<iostream>
#include<sstream>
#include<algorithm>
#include<vector>
#include<bitset>
#include<set>
#include<queue>
#include<stack>
#include<map>
#include<cstdlib>
#include<cmath>
#define PI 2*asin(1.0)
#define LL __int64
const int  MOD = 1e9 + 7;
const int N = 2e2 + 15;
const int INF = (1 << 30) - 1;
const int letter = 130;
using namespace std;
int n;
double d1;
LL x[N], y[N], n1[N], m[N];
struct node
{
    int from, to, cap, flow;
};
vector<node>edges;
vector<int>G[N];
int d[N], cur[N];
int s, t;
void init()
{
    edges.clear();
    for(int i = 0; i < N; i++) G[i].clear();
}
void addedge(int from, int to, int cap)
{
    edges.push_back((node)
    {
        from, to, cap, 0
    });
    edges.push_back((node)
    {
        to, from, 0, 0
    });
    int vs = edges.size();
    G[from].push_back(vs - 2);
    G[to].push_back(vs - 1);
}
bool bfs(int s, int t)
{
    memset(d, -1, sizeof(d));
    queue<int>q;
    while(!q.empty()) q.pop();
    q.push(s);
    d[s] = 0;
    while(!q.empty())
    {
        int x = q.front();
        q.pop();
        for(int i = 0; i < G[x].size(); i++)
        {
            node &e = edges[G[x][i]];
            if(d[e.to] < 0 && e.cap > e.flow)
            {
                d[e.to] = d[x] + 1;
                if(e.to == t) return true;
                q.push(e.to);
            }
        }
    }
    return false;
}
int dfs(int x, int a)
{
    if(x == t || a == 0) return a;
    int flow = 0, f;
    for(int &i = cur[x]; i < G[x].size(); i++)
    {
        node &e = edges[G[x][i]];
        if(d[x] + 1 == d[e.to] && ( f = dfs(e.to, min(a, e.cap - e.flow))) > 0)
        {
            flow += f;
            a -= f;
            edges[G[x][i]].flow += f;
            edges[G[x][i] ^ 1].flow -= f;
            if(a == 0) break;
        }
    }
    return flow;
}
int maxflow(int s, int t)
{
    int flow = 0;
    while(bfs(s, t))
    {
        memset(cur, 0, sizeof(cur));
        flow += dfs(s, INF);
    }
    return flow;
}
bool ok(int x1, int y1, int x2, int y2, double d)
{
    if(sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)) <= d) return true;
    return false;
}
int main()
{
    int tc;
    scanf("%d", &tc);
    while(tc--)
    {
        scanf("%d%lf", &n, &d1);
        s = 0;
        init();
        LL sum = 0;
        for(int i = 1; i <= n; i++)
        {
            scanf("%I64d%I64d%I64d%I64d", x + i, y + i, n1 + i, m + i);
            sum += n1[i];
        }
        ///jiantu
        for(int i = 1; i <= n; i++)
            addedge(i, i + n, m[i]); ///chai
        for(int i = 1; i <= n; i++)
            addedge(s, i, n1[i]);
        for(int i = 1; i <= n; i++)
            for(int j = i + 1; j <= n; j++)
            {
                if(ok(x[i], y[i], x[j], y[j], d1)) ///nbn
                {
                    addedge(i + n, j, INF);
                    addedge(j + n, i, INF);
                }
            }
        ///meiju
        int flag = 0;///geshi
        for(int i = 1; i <= n; i++)
        {
            t = i;
            int ans = maxflow(s, t);
            if(ans == sum)
            {
                if(flag) printf(" %d", i - 1);
                else printf("%d", i - 1);
                flag = 1;
            }
            for(int i = 0; i < edges.size(); i++)
                edges[i].flow = 0;
        }
       if(flag) printf("\n");
       else puts("-1");
    }

    return 0;
}
时间: 2024-10-19 03:08:33

POJ 3498March of the Penguins的相关文章

POJ 3498 March of the Penguins(网络流+枚举)

题目链接:http://poj.org/problem?id=3498 题目: Description Somewhere near the south pole, a number of penguins are standing on a number of ice floes. Being social animals, the penguins would like to get together, all on the same floe. The penguins do not wa

[POJ 3498] March of the Penguins

March of the Penguins Time Limit: 8000MS   Memory Limit: 65536K Total Submissions: 4378   Accepted: 1988 Description Somewhere near the south pole, a number of penguins are standing on a number of ice floes. Being social animals, the penguins would l

poj 3498 March of the Penguins 点流量有限制的最大流

题意: 给n块浮冰的坐标,每块浮冰上的企鹅数和能承受跳起的次数,求有哪些浮冰能让企鹅能到一起. 分析: 拆点将点流量的限制转化为边流量的限制,求最大流. 代码: //poj 3498 //sep9 #include <iostream> #include <queue> #include <algorithm> #include <cmath> using namespace std; const int maxN=128; const int maxM=4

图论 500题——主要为hdu/poj/zoj

转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并查集======================================[HDU]1213   How Many Tables   基础并查集★1272   小希的迷宫   基础并查集★1325&&poj1308  Is It A Tree?   基础并查集★1856   More i

图论常用算法之一 POJ图论题集【转载】

POJ图论分类[转] 一个很不错的图论分类,非常感谢原版的作者!!!在这里分享给大家,爱好图论的ACMer不寂寞了... (很抱歉没有找到此题集整理的原创作者,感谢知情的朋友给个原创链接) POJ:http://poj.org/ 1062* 昂贵的聘礼 枚举等级限制+dijkstra 1087* A Plug for UNIX 2分匹配 1094 Sorting It All Out floyd 或 拓扑 1112* Team Them Up! 2分图染色+DP 1125 Stockbroker

POJ - 3186 Treats for the Cows (区间DP)

题目链接:http://poj.org/problem?id=3186 题意:给定一组序列,取n次,每次可以取序列最前面的数或最后面的数,第n次出来就乘n,然后求和的最大值. 题解:用dp[i][j]表示i~j区间和的最大值,然后根据这个状态可以从删前和删后转移过来,推出状态转移方程: dp[i][j]=max(dp[i+1][j]+value[i]*k,dp[i][j-1]+value[j]*k) 1 #include <iostream> 2 #include <algorithm&

POJ 2533 - Longest Ordered Subsequence(最长上升子序列) 题解

此文为博主原创题解,转载时请通知博主,并把原文链接放在正文醒目位置. 题目链接:http://poj.org/problem?id=2533 Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK)

POJ——T2271 Guardian of Decency

http://poj.org/problem?id=2771 Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 5932   Accepted: 2463 Description Frank N. Stein is a very conservative high-school teacher. He wants to take some of his students on an excursion, but he is

POJ——T2446 Chessboard

http://poj.org/problem?id=2446 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 18560   Accepted: 5857 Description Alice and Bob often play games on chessboard. One day, Alice draws a board with size M * N. She wants Bob to use a lot of c