Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens‘ placement, where ‘Q‘
and ‘.‘
both indicate a queen and an empty space respectively.
解题思路:经典的八皇后问题,由于之前在《JAVA语言程序设计》中exerice6-22中做过这种问题,代码直接拿来修改下即可,JAVA实现如下:
static public List<String[]> solveNQueens(int n) { List<String[]> list=new ArrayList<String[]>(); if(n==1){ String[] str={"Q"}; list.add(str); return list; } // int count = 0; int[] queens = new int[n]; // queens are placed at (i, queens[i]) for (int i = 0; i < n; i++) queens[i] = -1; queens[0] = 0; int k = 1; while (k >=0) { int j = findPosition(k, queens,n); if (j ==-1) { queens[k] = -1; k--; // back track to the previous row } else { queens[k] = j; if (k == n-1) { // count++; String[] queenArray=new String[n]; for(int i=0;i<n;i++){ StringBuilder sb=new StringBuilder(); for(int j2=0;j2<n;j2++){ if(j2==queens[i]) sb.append(‘Q‘); else sb.append(‘.‘); } queenArray[i]=new String(sb); } list.add(queenArray); } else { k++; } } } return list; } public static int findPosition(int k, int[] queens,int n) { int start = queens[k] == -1 ? 0 : queens[k] + 1; for (int j = start; j < n; j++) { if (isValid(k, j, queens,n)) return j; } return -1; } public static boolean isValid(int k, int j, int queens[],int n) { for (int i = 0; i < k; i++) if (queens[i] == j) return false; for (int row = k - 1, column = j - 1; row >= 0 && column >= 0; row--, column--) if (queens[row] == column) return false; for (int row = k - 1, column = j + 1; row >= 0 && column <= n-1; row--, column++) if (queens[row] == column) return false; return true; }
时间: 2024-10-14 22:41:06